精英家教网 > 高中数学 > 题目详情
已知f(tanx)=
1
3sin2x+cos2x
,则f(x)=
 
考点:同角三角函数基本关系的运用,函数解析式的求解及常用方法
专题:函数的性质及应用,三角函数的求值
分析:由倍角公式化简后,再由万能公式化简,从而可求f(x)的解析式.
解答: 解:∵f(tanx)=
1
3sin2x+cos2x
=
1
1-cos2x
2
+
1+cos2x
2
=
1
2-cos2x
=
1
2-
1-tan2x
1+tan2x
=
1+tan2x
1+3tan2x

∴f(x)=
1+x2
1+3x2

故答案为:
1+x2
1+3x2
点评:本题主要考察了同角三角函数基本关系的运用,函数解析式的求解及常用方法,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个四面体的三视图如图所示,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥中,底面是边长为2的正方形,顶点在底面的射影是底面的中心,侧棱长为2,G是PB的中点.
(1)证明:PD∥面AGC;
(2)求AG和平面PBD所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图为曲柄连杆结构示意图,当曲柄 OA 在 OB 位置时,连杆端点 P 在 Q 的位置,当 OA 自 OB 按顺时针旋转 α 角时,P 和 Q 之间的距离为 x,已知 OA=25cm,AP=125cm,若 OA⊥AP,则 x 等于
 
(精确到0.1cm)

查看答案和解析>>

科目:高中数学 来源: 题型:

sin(
13π
4
)•cos(-
3
)
tan(
23π
3
)
+
sin(-
21π
4
)
cos(
17π
6
)
化简的结果是(  )
A、-
5
6
12
B、
6
4
C、-
6
4
D、
5
6
12

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,菱形ABCD的边长为2,对角线交于点O,DE⊥平面ABCD;
(Ⅰ)求证:AC⊥BE;
(Ⅱ)若∠ADC=120°,DE=2,BE上一点F满足OF∥DE,求直线AF与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,离心率为
2
2
,椭圆与x轴左交点与点F的距离为
2
-1.
(Ⅰ)求椭圆方程;
(Ⅱ)过点P(0,2)的直线l与椭圆交于不同的两点A,B,当△OAB面积为
2
2
时,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x2+
4
x
,x>0
0,x=0
x2+
4
x
,x<0
,若f(t)+f(t+2)>0,则实数t的取值范围是(  )
A、t<-3-
3
或t>-3+
3
B、t>-1
C、t<1-
3
或t>1+
3
D、t<-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线段AB、BD在平面α内,∠ABD=120°,线段AC⊥α,如果AB=a,BD=b,AC=c,则线段CD的长为(  )
A、
a2+b2+c2+ab
B、
a2+b2+c2-ab
C、
a2+b2+c2-ac
D、
a2+b2+c2

查看答案和解析>>

同步练习册答案