精英家教网 > 高中数学 > 题目详情

【题目】某商品在近30天内每件的销售价格p()与时间t()的函数关系是该商品的日销售量Q()与时间t()的函数关系是Q=-t40(0<t≤30tN)

(1)求这种商品的日销售金额的解析式;

(2)求日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?

【答案】(1);(2) (元),且第25天,日销售额最大

【解析】

(1)设日销售金额为元,由可求出解析式,注意的取值范围;

(2)首先将函数的解析式化为二次函数的顶点式,结合二次函数的单调性即可求出函数的最值.

(1)设日销售金额为(元),则

所以.

所以

(2)若,则时,(元);

,则

时单调递减,当时,(元),

由于,故时,(元),

所以这种商品的日销售额最大值为元,且第天的日销售额最大。

故得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四个命题:

命题a=0,ab=0”的否命题是a=0,ab≠0”;

已知命题p:x∈R,x2+x+1<0,p:x∈R,x2+x+1≥0;

若命题p”与命题“pq”都是真命题,则命题q一定是真命题;

命题0<a<1,loga(a+1)<lo.

其中正确命题的序号是_____.(把所有正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:

男生

女生

总计

购买数学课外辅导书超过

购买数学课外辅导书不超过

总计

(Ⅰ)根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;

(Ⅱ)从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取1人,认为作业量大的概率为.

认为作业量大

认为作业量不大

合计

男生

18

女生

17

合计

50

(Ⅰ)请完成上面的列联表;

(Ⅱ)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

span>5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上海中学在每学年的上学期会举行体育嘉年华活动,假设在今年的活动中共设了8个体育项目,高一某班的班主任参加了其中的若干个项目,甲、乙、丙三位同学猜测该老师参加的项目见下表:(“×”表示未参加,“√”表示参加)

项目1

项目2

项目3

项目4

项目5

项目6

项目7

项目8

×

×

×

×

×

×

×

×

×

×

×

×

×

×

老师告诉甲、乙、丙:“你们分别猜对5次、5次、6次”,由此请你猜测该老师参加的体育项目编号依次为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,则下列结论正确的是( )

A.时,函数上有最小值;

B.时,函数上有最小值;

C.对任意的实数,函数的图象关于点对称;

D.方程可能有三个实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)求函数的零点和极值;

(3)若对任意,都有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′( );当P是原点时,定义P的“伴随点”为它自身,平面曲线C上所有点的“伴随点”所构成的曲线C′定义为曲线C的“伴随曲线”.现有下列命题:
①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A;
②单位圆的“伴随曲线”是它自身;
③若曲线C关于x轴对称,则其“伴随曲线”C′关于y轴对称;
④一条直线的“伴随曲线”是一条直线.
其中的真命题是(写出所有真命题的序列).

查看答案和解析>>

同步练习册答案