精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,a∈R.
(1)求函数f(x)的单调区间;
(2)若函数f(x)有两个零点x1 , x2 , (x1<x2),求证:1<x1<a<x2<a2

【答案】
(1)解:由题意,函数的定义域为(0,+∞),

当a≤0时,

函数f(x)的单调递增区间为(0,+∞),

当a>0时,

若x≥a, ,此时函数f(x)单调递增,

若x<a, ,此时函数f(x)单调递减,

综上,当a≤0时,函数f(x)的单调递增区间为(0,+∞);

当a>0时,函数f(x)的单调递减区间为(0,a);单调递增区间为(a,+∞)


(2)证明:由(1)知,当a≤0时,函数f(x)单调递增,

此时函数至多只有一个零点,不合题意;

则必有a>0,此时函数f(x)的单调递减区间为(0,a);单调递增区间为(a,+∞),

由题意,必须 ,解得a>1,…10分

,f(a)<0,

得x1∈(1,a),

而f(a2)=a2﹣a﹣alna=a(a﹣1﹣lna),

下面证明:a>1时,a﹣1﹣lna>0

设g(x)=x﹣1﹣lnx,x>1

所以g(x)在x>1时递增,则g(x)>g(1)=0,

所以f(a2)=a2﹣a﹣alna=a(a﹣1﹣lna)>0,

又f(a)<0,

所以x2∈(a,a2),

综上,1<x1<a<x2<a2


【解析】(1)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间.(2)由(1)知,当a≤0时,函数f(x)单调递增,函数至多只有一个零点,不合题意;则必有a>0,此时函数f(x)的单调递减区间为(0,a);单调递增区间为(a,+∞),进一步得出x1∈(1,a)和x2∈(a,a2),从而得出答案.
【考点精析】根据题目的已知条件,利用利用导数研究函数的单调性的相关知识可以得到问题的答案,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.

(Ⅰ)求此人到达当日空气质量优良的概率

(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率

(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点,且与圆外切于点x轴上的一个动点.

求圆C的标准方程;

当圆C上存在点Q,使,求实数m的取值范围;

时,过P作直线PAPB与圆C分别交于异于点P的点AB两点,且求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当向量 = =(﹣2,2), =(1,0)时,执行如图所示的程序框图,输出的i值为(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求证:AB⊥PC;
(2)求二面角B一PC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于AB两点.

(1)若直线l的倾斜角为60°,求|AB|的值;

(2)|AB|=9,求线段AB的中点M到准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的图象可能是(

A.(1)(3)
B.(1)(2)(4)
C.(2)(3)(4)
D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.

(1)求t,p的值;
(2)设A,B是抛物线上分别位于x轴两侧的两个动点,且 (其中O为坐标原点).求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xex
(1)求f(x)的极值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

同步练习册答案