【题目】已知函数f(x)满足f(x﹣1)=﹣f(﹣x+1),且当x≤0时,f(x)=x3 , 若对任意的x∈[t,t+2],不等式f(x+t)≥2 f(x)恒成立,则实数t的取值范围是 .
【答案】[ ,+∞)
【解析】解:由f(x﹣1)=﹣f(﹣x+1),得f(x0)=﹣f(﹣x﹣1+1)=﹣f(x),
即函数f(x)是奇函数,
若x>0,则﹣x<0,则f(﹣x)=﹣x3=﹣f(x),
即f(x)=x3 , (x>0),
综上f(x)=x3 ,
则不等式f(x+t)≥2 f(x)等价为不等式f(x+t)≥f( x),
∵f(x)=x3 , 为增函数,
∴不等式等价为x+t≥ x在x∈[t,t+2]恒成立,
即:t≥( ﹣1)x,在x∈[t,t+2]恒成立,
即t≥( ﹣1)(t+2),
即(2﹣ )t≥2( ﹣1),
则t≥ = ,
故实数t的取值范围[ ,+∞),
故答案为:[ ,+∞)
根据条件确定函数是奇函数,求出函数f(x)的表达式,并判断函数的单调性,利用函数的单调性将不等式恒成立进行转化,即可求出t的最大值.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2x3﹣3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.
(1)求f(x)的解析式;
(2)求f(x)在点A(1,16)处的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌连锁便利店有个分店,A,B,C三种商品在各分店均有销售,这三种商品的单价和重量如表1所示:
商品A | 商品B | 商品C | |
单价(元) | 15 | 20 | 30 |
每件重量(千克) | 0.2 | 0.3 | 0.4 |
表1
某日总店向各分店分配的商品A,B,C的数量如表2所示:
商品 分店 | 分店1 | 分店2 | …… | 分店 |
A | 12 | 20 | m1 | |
B | 15 | 20 | m2 | |
C | 20 | 15 | m3 |
表2
表3表示该日分配到各分店去的商品A,B,C的总价和总重量:
分店1 | 分店2 | …… | 分店 | |
总价(元) | ||||
总重量(千克) |
表3
则__________ ; __________ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)2(x﹣a)(a∈R)在x= 处取得极值.
(1)求实数a的值;
(2)求函数y=f(x)在闭区间[0,3]的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某购物中心为了了解顾客使用新推出的某购物卡的顾客的年龄分布情况,随机调查了位到购物中心购物的顾客年龄,并整理后画出频率分布直方图如图所示,年龄落在区间内的频率之比为.
(1) 求顾客年龄值落在区间内的频率;
(2) 拟利用分层抽样从年龄在的顾客中选取人召开一个座谈会,现从这人中选出人,求这两人在不同年龄组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex , g(x)=ln 的图象分别与直线y=m交于A,B两点,则|AB|的最小值为( )
A.2
B.2+ln2
C.e2
D.2e﹣ln
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax4lnx+bx4﹣c在x=1处取得极值﹣3﹣c.
(1)试求实数a,b的值;
(2)试求函数f(x)的单调区间;
(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n幅图的蜂巢总数.则f(4)=________;f(n)=________( )
A.37 3n2﹣3n+1
B.38 3n2﹣3n+2
C.36 3n2﹣3n
D.35 3n2﹣3n﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com