精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

(Ⅰ)求上的单调区间;

(Ⅱ)求为自然对数的底数)上的最大值;

【答案】(1)单调减区间为:单调增区间为

(2) 当时,最大值为;当时,最大值为2.

【解析】试题分析:(1)当x<1时,利用导数可求得所以所以上的单调减区间为:单调增区间为 .(2) 分段函数分段做,先处理当, 由(Ⅰ)知在上单调递减,在上单调递增,从而处取得极大值,最大值f(-1)=2,当时,,(),上单调递增,所以上的最大值为两个区间上的最大值a与2进行比较,所以当时,上的最大值为;当时,上的最大值为2.

试题解析:(Ⅰ)因为

时,

得到;解得到.所以上的单调减区间为:单调增区间为

(Ⅱ)①当时,由(Ⅰ)知在上单调递减,在上单调递增,从而处取得极大值

,所以上的最大值为2.

②当时,,当时,上单调递增,所以上的最大值为.所以当时,上的最大值为;当时,上的最大值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知全集U={x|x2﹣3x+2≥0},A={x||x﹣2|>1},B=
求:
(1)A∩B;
(2)A∩UB;
(3)U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 , 求解下列问题
(1)求函数 的最大值和最小正周期;
(2)设 的内角 的对边分别 , ,若 值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年10月28日,经历了近半个世纪风雨的南京长江大桥真“累”了,终于停下来喘口气了,之前大桥在改善我们城市的交通状况方面功不可没.据相关数据统计,一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到280辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为50千米/小时.研究表明,当30≤x≤280时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤280时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时) f(x)=xv(x)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,在其定义域内既是奇函数又是减函数的是(
A.y=x
B.y=
C.y=﹣x3
D.y=( x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某辆汽车以x km/h的速度在高速公路上匀速行驶考虑到高速公路行车安全要求60≤x≤120时,每小时的油耗所需要的汽油量,其中k为常数,若汽车以120km/h的速度行驶时,每小时的油耗为11.5L.

1k的值

2求该汽车每小时油耗的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为2.

(1)求椭圆的标准方程;

(2)设直线与椭圆交于两点, 为坐标原点,若,求原点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是关于x的方程f(x)﹣g(x)=0的一个解,求t的值;
(2)当0<a<1且t=﹣1时,解不等式f(x)≤g(x);
(3)若函数F(x)=afx+tx2﹣2t+1在区间(﹣1,2]上有零点,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两圆x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三条公切线,若a∈R,b∈R,且ab≠0,则 的最小值为(
A.
B.
C.1
D.3

查看答案和解析>>

同步练习册答案