精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c分别是角A,B,C的对边,已知A为锐角,且sin2A-cos2A=$\frac{1}{2}$,则(  )
A.b+c<2aB.b+c≤2aC.b+c=2aD.b+c≥2a

分析 由条件利用二倍角的余弦函数公式化简,求出cos2A的值,由A为锐角求出A的度数,利用余弦定理列出关系式,把cosA的值代入并利用基本不等式得出关系式,即可做出判断.

解答 解:在△ABC中,∵A为锐角,且sin2A-cos2A=-cos2A=$\frac{1}{2}$,∴cos2A=-$\frac{1}{2}$,∴2A=$\frac{2π}{3}$,∴A=$\frac{π}{3}$.
由余弦定理有a2=b2+c2-bc=(b+c)2-3bc≥(b+c)2-$\frac{3}{4}$(b+c)2=$\frac{{(b+c)}^{2}}{4}$,即4a2≥(b+c)2
解得:2a≥b+c,
故选:B.

点评 此题考查了余弦定理,以及基本不等式的运用,熟练掌握余弦定理是解本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.用适当的符号(∈,∉,⊆,?,=)填空.
(1)2∈{x|x是质数};
(2){0}?∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是6元,销售单价与日均销售量的关系如下表:
销售单价/元78910111213
日均销售量/桶440400360320280240200
请根据以上数据作出分析,这个经营部为获得最大利润应定价为12元.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等比数列{an}的前n项和为Sn,an>0,n∈N*,且满足a1=1,S3=13
(1)求公比q与a3
(2)设bn=log3an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在数列{an}中,an=$\frac{(-1)^{n+1}}{n}$,求证:S2n <$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.数列{an}中,a1=1,an+1=2an+3n-4.
(1)求证:数列{an+1-an+3}是等比数列;
(2)求数列{an}的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求使得函数y=sin(3x-$\frac{π}{4}$)取得最小值的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.两条直线l1:x+y-2=0与l2:7x-y+4=0相交成四个角,则这些角的平分线所在的直线的方程为x-3y+7=0或6x+2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an}中,已知an≥1,a1=1,且an+1-an=$\frac{2}{{a}_{n+1}+{a}_{n}-1}$(n∈N*
(1)设bn=(an-$\frac{1}{2}$)2,求数列{bn}及{an}的通项公式
(2)设cn=4bn,Sn=$\frac{1}{{c}_{1}{c}_{2}}$+$\frac{1}{{c}_{2}{c}_{3}}$+…+$\frac{1}{{c}_{n}{c}_{n+1}}$,求证:$\frac{1}{9}$≤Sn<$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案