精英家教网 > 高中数学 > 题目详情
2.已知命题p:方程$\frac{{y}^{2}}{m}$$+\frac{{x}^{2}}{3}$=1表示的焦点在y轴上的椭圆;命题q:方程$\frac{{x}^{2}}{m+2}$$-\frac{{y}^{2}}{m-4}$=1表示的曲线是双曲线,若“p∧q”为假命题且“p∨q”为真命题,求实数m的取值范围.

分析 先求出命题p真、命题q真时m的范围,由p、q一真一假列式求解.

解答 解:命题p真:方程$\frac{{y}^{2}}{m}$$+\frac{{x}^{2}}{3}$=1表示的焦点在y轴上的椭圆,∴m>3;
命题q真:方程$\frac{{x}^{2}}{m+2}$$-\frac{{y}^{2}}{m-4}$=1表示的曲线是双曲线,∴(m+2)(m-4)>0⇒m<-2或m>4;
若“p∧q”为假命题且“p∨q”为真命题,则p、q一真一假,
①若p真q假.则$\left\{\begin{array}{l}{m>3}\\{-2≤m≤4}\end{array}\right.\\;解得3<m≤4$⇒3<m≤4;
②若p假q真.则$\left\{\begin{array}{l}{m≤3}\\{m<-2\\;或m>4}\end{array}\right.$⇒m<-2
综上实数m的取值范围为(-∞,-2)∪(3,4]

点评 本题考查了复合命题真假的应用,涉及到了圆锥曲线的方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-$\frac{ax+1}{x-1}$,a∈R,且f'(2)=$\frac{5}{2}$.
(1)求函数f(x)的单调区间;
(2)证明:与曲线y=lnx(x>1)和y=ex都相切的直线有且只有一条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}与{bn}的前n项和分别为An和Bn,且对任意n∈N*,an+1-an=2(bn+1-bn)恒成立.
(1)若An=n2,b1=2,求Bn
(2)若对任意n∈N*,都有an=Bn及$\frac{{b}_{2}}{{a}_{1}{a}_{2}}$+$\frac{{b}_{3}}{{a}_{2}{a}_{3}}$+$\frac{{b}_{4}}{{a}_{3}a4}$+…+$\frac{{b}_{n+1}}{{a}_{n}{a}_{n+1}}$<$\frac{1}{3}$成立,求正实数b1的取值范围;
(3)若a1=2,bn=2n,是否存在两个互不相等的整数s,t(1<s<t),使$\frac{{A}_{1}}{{B}_{1}}$,$\frac{{A}_{s}}{{B}_{s}}$,$\frac{{A}_{t}}{{B}_{t}}$成等差数列?若存在,求出s,t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线E1:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的左右焦点分别为F1,F2,椭圆E2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线E1有公共的焦点,且E1,E2在第一象限和第四象限的交点分别为M,N,弦MN过F2,则椭圆E2的标准方程为(  )
A.$\frac{{x}^{2}}{\frac{81}{4}}$+$\frac{{y}^{2}}{\frac{45}{4}}$=1B.$\frac{{x}^{2}}{13}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a,b,c分别是A,B,C的对边,且满足bsinA+bcosA=c.
(1)求B;
(2)若角A的平分线与BC相交于D点,AD=AC,BD=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,点A,B分别是椭圆C的左、右顶点,点P是椭圆C上异于A,B两点的任意一点,当△PAB为等腰三角形时,则△PAB的面积为2,.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线AP与直线x=4交于点M,直线MB交椭圆C于点Q,试问:直线PQ是否过定点?若是,求出定点的坐标,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过点F1(-c,0)的直线交椭圆E于A,B两点,若|AF1|=3|F1B|,且AB⊥AF2,则椭圆E的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数y=ex+ax有大于零的极值点,则实数a的取值范围是(  )
A.a>-1B.$a>-\frac{1}{e}$C.a<-1D.$a<-\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.点(x,y)满足$\left\{\begin{array}{l}x≥1\\ y≥1\\ x+y≤3\end{array}\right.$,则$\frac{xy}{{{x^2}+{y^2}}}$的取值范围为[$\frac{2}{5}$,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案