精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在四面体VABC木块中,P为△VAC的重心,这点P作截面EFGH,若截面EFGH是平行四边形,则该截面把木块分成两部分体积之比为____________. (填体积小与体积大之比

【答案】

【解析】

,且,连接,则多面体的体积等于四棱锥的体积与三棱锥的体积之和,多面体的体积等于四棱锥的体积与三棱锥的体积和,找出多面体的体积的关系,得到答案

如图,因为四边形为平行四边形,所以,且

所以平面,又平面平面平面

所以,

因为P的中心,所以

,所以

连接

则多面体的体积等于四棱锥的体积与三棱锥的体积和,

多面体的体积等于四棱锥的体积与三棱锥的体积和

因为四棱锥的高是四棱锥的高的2倍,底面积相等,

所以四棱锥的体积是四棱锥的体积的2倍;

因为三棱锥的底面是三棱锥的底面面积的倍,高是3倍,

所以三棱锥的体积是三棱锥的体积的4倍,

设论证的体积为,则三棱锥的体积为,四棱锥的体积是,所以多面体的体积是

又多面体的体积等于

所以多面体的体积与多面体的体积比等于.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:

原料
种类

磷酸盐(单位:吨)

硝酸盐(单位:吨)

4

20

2

20

现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.
(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;
(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣tx2+3x,若对于任意的a∈[1,2],b∈(2,3],函数f(x)在区间(a,b)上单调递减,则实数t的取值范围是(  )
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAD;

(2)在PB上确定一个点Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若两直线的倾斜角分别为 ,则下列四个命题中正确的是( )

A. <,则两直线的斜率:k1 < k2 B. =,则两直线的斜率:k1= k2

C. 若两直线的斜率:k1 < k2 ,则< D. 若两直线的斜率:k1= k2 ,则=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过直线x﹣y﹣1=0与直线2x+y﹣5=0的交点P.

(1)若l与直线x+3y﹣1=0垂直,求l的方程;

(2)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.

(1)求a和b的值;

(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an},a2=8,前9项和为153.
(1)求a5an
(2)若 ,证明数列{bn}为等比数列;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Ω是一个与x轴的正半轴、y轴的正半轴分别相切于点C、D的定圆所围成区域(含边界),A、B、C、D是该圆的四等分点,若点P(x,y)、P′(x′,y′)满足x≤x′且y≥y′,则称P优于P′,如果Ω中的点Q满足:不存在Ω中的其它点优于Q,那么所有这样的点Q组成的集合是劣弧(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案