精英家教网 > 高中数学 > 题目详情

已知椭圆的长轴长是短轴长的两倍,焦距为.

(1)求椭圆的标准方程;

(2)设不过原点的直线与椭圆交于两点,且直线的斜率依次成等比数列,求△面积的取值范围.

 

【答案】

(1) ;(2)△面积的取值范围为 。

【解析】

试题分析:(1)由已知得 ∴方程:  (4分)

(2)由题意可设直线的方程为: 

联立 消去并整理,得:

则△ ,

此时设

于是  (7分)

又直线的斜率依次成等比数列,

  

 得:  .又由△ 得:

显然 (否则:,则中至少有一个为0,直线 中至少有一个斜率不存在,矛盾!)                     (10分)

设原点到直线的距离为,则

故由得取值范围可得△面积的取值范围为 (13分)

考点:本题主要考查椭圆标准方程,直线与椭圆的位置关系。

点评:中档题,曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题求椭圆标准方程时,主要运用了椭圆的定义及几何性质。(2)作为研究点到直线的距离最值问题,利用了函数思想。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于(  )
A、
1
3
B、
3
3
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的长轴长是短轴长的2倍,且过点A(2,-6)求椭圆的标准方程和离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的长轴长是短轴长的
3
倍,则椭圆的离心率等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的长轴长是短轴长的3倍,且以过点M(3,0),求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的长轴长是短轴长的
2
倍,则椭圆的离心率等于
2
2
2
2

查看答案和解析>>

同步练习册答案