精英家教网 > 高中数学 > 题目详情

【题目】某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是小时.

【答案】24
【解析】解:由题意可得,x=0时,y=192;x=22时,y=48.代入函数y=ekx+b
可得eb=192,e22k+b=48,
即有e11k= ,eb=192,
则当x=33时,y=e33k+b= ×192=24.
故答案为:24.
由题意可得,x=0时,y=192;x=22时,y=48.代入函数y=ekx+b , 解方程,可得k,b,再由x=33,代入即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+c在x=﹣ 与x=1时都取得极值,求a,b的值与函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】规定投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀,现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投标未在8环以上,用1表示该次投标在8环以上;再以每三个随机数作为一组,代表一轮的结果,经随机模拟实验产生了如下20组随机数:

101 111 011 101 010 100 100 011 111 110

000 011 010 001 111 011 100 000 101 101

据此估计,该选手投掷飞镖三轮,至少有一轮可以拿到优秀的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中, 是平行四边形, 是矩形, .

(Ⅰ)求证:平面平面

(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求的单调区间;

(2)证明:对任意的在区间内均存在零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,其中.

(1)求函数的极大值点;

(2)当时,若在上至少存在一点,使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x)其中(a>0且a≠1),设h(x)=f(x)﹣g(x).
(1)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由;
(2)若f(3)=2,求使h(x)<0成立的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,已知曲线 ,设交于点.

(1)求点的极坐标;

(2)若直线过点,且与曲线交于两不同的点,求的最小值.

查看答案和解析>>

同步练习册答案