精英家教网 > 高中数学 > 题目详情

【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为x,求x的分布列和数学期望.

【答案】
(1)解:记事件 {从甲箱中摸出的1个球是红球}, {从乙箱中摸出的1个球是红球}

{顾客抽奖1次获一等奖}, {顾客抽奖1次获二等奖}, {顾客抽奖1次能获奖},由题意, 相互独立, 互斥, 互斥,且

,∴

故所求概率为


(2)解:顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为 ,∴

于是

,故x的分布列为

x

0

1

2

3

p

x的数学期望为 .


【解析】(1)顾客抽奖1次能获奖的情况有:顾客抽奖1次获一等奖,顾客抽奖1次获二等奖,分别求出两种情况的概率并相加即为所求;(2)顾客抽奖3次为独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,根据n次独立重复实验中恰好发生k次的概率公式P(X=k)=pk(1-p)n-k分别求出X所有可能取值的概率,列出分布列,根据服从二项分布的离散型随机变量的数学期望E(X)=np即可求解.
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若直线l1:y=x+a和l2:y=x+b将圆(x﹣1)2+(y﹣2)2=8分成长度相同的四段弧,则ab=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线系方程(其中为参数).当时,直线与两坐标轴所围成的三角形的面积为__________,若该直线系中的三条直线围成正三角形区域,则区域的面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:

(1)ACBD=ADAB;
(2)AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(用数字作答)
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)在(2)的前提下,男同学甲与女同学乙不能同时选出。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2axbg(x)=ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求abcd的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,已知A(5,-2),B(7,3),且AC边的中点My轴上,BC的中点Nx轴上.

(1)求点C的坐标

(2)边上的中线所在直线方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常数a∈R.
(Ⅰ)讨论g(x)的单调性;
(Ⅱ)当a>0时,若f(x)有两个零点x1 , x2(x1<x2),求证:在区间(1,+∞)上存在f(x)的极值点x0 , 使得x0lnx0+lnx0-2x0>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和.求:

I)求数列的通项公式;

II)求数列的前n项和

III)求的最小值.

查看答案和解析>>

同步练习册答案