【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为x,求x的分布列和数学期望.
【答案】
(1)解:记事件 {从甲箱中摸出的1个球是红球}, {从乙箱中摸出的1个球是红球}
{顾客抽奖1次获一等奖}, {顾客抽奖1次获二等奖}, {顾客抽奖1次能获奖},由题意, 与 相互独立, 与 互斥, 与 互斥,且 , , ,
∵ , ,∴ ,
,
故所求概率为
(2)解:顾客抽奖3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为 ,∴ ,
于是 , , ,
,故x的分布列为
x | 0 | 1 | 2 | 3 |
p |
x的数学期望为 .
【解析】(1)顾客抽奖1次能获奖的情况有:顾客抽奖1次获一等奖,顾客抽奖1次获二等奖,分别求出两种情况的概率并相加即为所求;(2)顾客抽奖3次为独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为,根据n次独立重复实验中恰好发生k次的概率公式P(X=k)=pk(1-p)n-k分别求出X所有可能取值的概率,列出分布列,根据服从二项分布的离散型随机变量的数学期望E(X)=np即可求解.
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知直线系方程(其中为参数).当时,直线与两坐标轴所围成的三角形的面积为__________,若该直线系中的三条直线围成正三角形区域,则区域的面积为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4﹣1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:
(1)ACBD=ADAB;
(2)AC=AE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法?(用数字作答)
(1)男、女同学各2名;
(2)男、女同学分别至少有1名;
(3)在(2)的前提下,男同学甲与女同学乙不能同时选出。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b , g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a , b , c , d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,已知A(5,-2),B(7,3),且AC边的中点M在y轴上,BC的中点N在x轴上.
(1)求点C的坐标;
(2)求边上的中线所在直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=xlnx-a(x-1)2-x,g(x)=lnx-2a(x-1),其中常数a∈R.
(Ⅰ)讨论g(x)的单调性;
(Ⅱ)当a>0时,若f(x)有两个零点x1 , x2(x1<x2),求证:在区间(1,+∞)上存在f(x)的极值点x0 , 使得x0lnx0+lnx0-2x0>0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com