精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,则f(f(1))=0.

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,将x=1代入可得:则f(f(1))值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{3{x}^{2}-4,x≥4}\\{0,x<0}\end{array}\right.$,
∴f(f(1))=f(-1)=0.
故答案为:0.

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.设f(x)是定义在实数集R上的函数,且y=f(x+1)是偶函数,当x≥1时,f(x)=2x-1,则f($\frac{2}{3}$),f($\frac{3}{2}$),f($\frac{1}{3}$)的大小关系是(  )
A.f($\frac{2}{3}$)<f($\frac{3}{2}$)<f($\frac{1}{3}$)B.f($\frac{1}{3}$)<f($\frac{2}{3}$)<f($\frac{3}{2}$)C.f($\frac{1}{3}$)<f($\frac{3}{2}$)<f($\frac{2}{3}$)D.f($\frac{3}{2}$)<f($\frac{1}{3}$)<f($\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)在(-4,7)上是增函数,则使y=f(x-3)+2为增函数的区间为(  )
A.(-2,3)B.(-1,7)C.(-1,10)D.(-10,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.两条平行直线l1:3x-2y-1=0,l2:3x-2y+1=0的距离是(  )
A.$\frac{{2\sqrt{13}}}{13}$B.$\frac{{\sqrt{13}}}{13}$C.$\frac{1}{13}$D.$\frac{2}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(-3,5),B(2,15),直线l:3x-4y+4=0.
(1)求过A点与直线l平行的直线方程;
(2)若P点在直线l上,求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知F1、F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过右焦点F2的直线交椭圆于A、B两点,且AF2=2F2B,tan∠AF1B=$\frac{3}{4}$,则该椭圆的离心率等于$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示为二次函数y=ax2+bx+c的图象,则|OA|•|OB|等于(  )
A.$\frac{c}{a}$B.-$\frac{c}{a}$C.±$\frac{c}{a}$D.-$\frac{a}{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在复平面内,复数z=$\frac{2+i}{1-i}$,则其共轭复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=loga|x|(a>0且a≠1)在(0,+∞)上递增,则f(-2)与f(a+1)的大小关系为f(-2)<f(a+1).

查看答案和解析>>

同步练习册答案