分析 设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到$\frac{90•π•4}{180}$=2πr,解得r=1,然后根据勾股定理计算圆锥的高.即可求解几何体的体积.
解答 解:设圆锥的底面圆的半径为r,
根据题意得 $\frac{90•π•4}{180}$=2πr,解得r=1,
所以这个圆锥的高=$\sqrt{{4}^{2}-{1}^{2}}$=$\sqrt{15}$(cm).
圆锥的体积为:$\frac{1}{3}•π•{1}^{2}•\sqrt{15}$=$\frac{\sqrt{15}}{3}$π.cm3.
故答案为:$\frac{\sqrt{15}}{3}$π.
点评 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | d<a<c<b | B. | d<c<a<b | C. | a<d<b<c | D. | a<d<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{π}{12}$ | B. | -$\frac{π}{6}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com