精英家教网 > 高中数学 > 题目详情

【题目】判断下列命题的真假:
(1)存在一个函数,既是偶函数又是奇函数;
(2)每一条线段的长度都能用正有理数来表示;
(3)存在一个实数x0,使得等式 成立;
(4)x∈R,x2-3x+2=0;
(5)x0∈R, .

【答案】
(1)

【解答】真命题,如函数f(x)=0,既是偶函数又是奇函数.


(2)

【解答】假命题,如边长为1的正方形,对角线长度为 ,就不能用正有理数表示.


(3)

【解答】假命题,方程x2+x+8=0的判别式Δ=-31<0,故方程无实数解.


(4)

【解答】假命题,只有当x=2或x=1时,等式x2-3x+2=0才成立.


(5)

【解答】真命题,x0=2或x0=1,都使得等式成立.


【解析】判断一个全称命题为假命题,只需举一反例即可;判断一个特称命题为真命题,只需举一例即可;在判断全称命题为真命题或者判断特称命题为假命题时,我们需要严格的证明.
【考点精析】根据题目的已知条件,利用全称命题的相关知识可以得到问题的答案,需要掌握全称命题,它的否定;全称命题的否定是特称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】当n=1,2,3,4,5,6 时,比较 2n 和 n2 的大小并猜想,则下列猜想中一定正确的是( )
A.时,n2>2n
B. 时, n2>2n
C. 时, 2n>n2
D. 时, 2n>n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据市场调查,某种商品一年内每件出厂价在7千元的基础上,按月呈f(x)=Asin(ωx+)+b (A>0,ω>0,| |<)的模型波动(x为月份),已知3月份达到最高价9千元,7月份价格最低为5千元,根据以上条件可确定f(x)的解析式为

A. f(x)=2sin(x-)+7 (1≤x≤12,x∈N

B. f(x)=9sin(x-) (1≤x≤12,x∈N

C. f(x)=2sinx+7 (1≤x≤12,x∈N

D. f(x)=2sin(x+)+7 (1≤x≤2,x∈N

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设k∈R,对任意的向量 和实数x∈[0,1],如果满足 ,则有 成立,那么实数λ的最小值为(
A.1
B.k
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男3020),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?

(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5~7分钟,女生乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.

附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,值域为[1,+∞)的是(
A.y=2x+1
B.y=
C.y= +1
D.y=x+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对a,b∈R,记max{a,b}= ,则函数f(x)=max{|x+1|,x+2}(x∈R)的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若上存在零点,求实数的取值范围;

(2)当时, 若对任意的,总存在使成立, 求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

同步练习册答案