精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为R,对任意的实数m,n都有f(m+n)=f(m)+f(n)+
1
2
且f(
1
2
)=0,当x>
1
2
时,f(x)>0
(1)判断函数f(x)的单调性,并证明你的结论;
(2)若对任意实数x,不等式f(ax2+ax+1)≥f(2x2+2x)恒成立,求实数a的取值范围.
分析:(1)任取x1,x2∈R,且x1<x2,令x2=x1+t(t>0),作差f(x2)-f(x1),利用已知f(m+n)=f(m)+f(n)+
1
2
且f(
1
2
)=0及x>
1
2
时,f(x)>0,可求得f(x2)>f(x1),从而可判断其单调性;
(2)利用(1)知f(x)为R上单调递增函数,f(ax2+ax+1)≥f(2x2+2x)恒成立?(a-2)x2+(a-2)x+1≥0恒成立,于是可求得实数a的取值范围.
解答:解:(1)f(x)单调递增,证明如下:
任取x1,x2∈R,且x1<x2
则令x2=x1+t(t>0),
则f(x2)-f(x1)=f(x1+t)-f(x1
=f(x1)+f(t)+
1
2
-f(x1)=f(t+
1
2
-
1
2
)+
1
2
=f(t+
1
2
)+f(-
1
2
)+1,
∵f(m+n)=f(m)+f(n)+
1
2
且f(
1
2
)=0,
令m=n=0得f(0)=-
1
2

令m=-
1
2
,n=
1
2
可得f(-
1
2
)=-1,
∴f(t+
1
2
)+f(-
1
2
)+1=f(t+
1
2
),
∵t>0,
∴t+
1
2
1
2
,则f(t+
1
2
)>0,
∴f(x2)>f(x1),故f(x)再R上为单调递增函数.
(2)∵f(ax2+ax+1)≥f(2x2+2x)恒成立,f(x)为R上单调递增函数,
∴ax2+ax+1≥2x2+2x恒成立,
即(a-2)x2+(a-2)x+1≥0恒成立,
当a=2时,有1≥0恒成立,
故a=2符合题意;
当a≠2时,应有
a-2>0
=(a-2)2-4(a-2)≤0

解得:2<a≤6,
综上所述,实数a的取值范围是[2,6].
点评:本题考查抽象函数及其应用,着重考查函数单调性的判断及应用,考查转化思想与赋值能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的有(  )个.
①已知函数f(x)在(a,b)内可导,若f(x)在(a,b)内单调递增,则对任意的?x∈(a,b),有f′(x)>0.
②函数f(x)图象在点P处的切线存在,则函数f(x)在点P处的导数存在;反之若函数f(x)在点P处的导数存在,则函数f(x)图象在点P处的切线存在.
③因为3>2,所以3+i>2+i,其中i为虚数单位.
④定积分定义可以分为:分割、近似代替、求和、取极限四步,对求和In=
n
i=1
f(ξi)△x
中ξi的选取是任意的,且In仅于n有关.
⑤已知2i-3是方程2x2+px+q=0的一个根,则实数p,q的值分别是12,26.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)已知函数f(x)=x3-x,其图象记为曲线C.
(i)求函数f(x)的单调区间;
(ii)证明:若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积记为S1,S2.则
S1S2
为定值;
(Ⅱ)对于一般的三次函数g(x)=ax3+bx2+cx+d(a≠0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案