精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)作出函数的图像,并根据图像写出函数的单调区间;以及在各单调区间上的增减性.
(Ⅱ)求函数时的最大值与最小值.

(Ⅰ)单调区间,在区间上单调递减,在区间上单调递增。(Ⅱ)最小值最大值

解析试题分析:(Ⅰ)当,增区间为,减区间为,当,增区间为,减区间为

(Ⅱ)结合图像可知最小值,最大值
考点:函数单调性及最值
点评:带绝对值的函数首先分情况去掉绝对值符号转化为分段函数,第二问求二次函数最值要注意结合函数图像考虑

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数

(1)在如图给定的直角坐标系内画出的图象;
(2)写出的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若关于的不等式的解集是的定义域是,
,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


已知函数,且任意的

(1)求的值;
(2)试猜想的解析式,并用数学归纳法给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)时,求的最小值;
(2)若上是单调函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(常数)在处取得极大值M=0.
(Ⅰ)求的值;
(Ⅱ)当,方程有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时,
(1)求的值;
(2)当时,求的解析式;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是否存在实数使的定义域为,值域为?若存在,求出的值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)函数的图像在处的切线的斜率为若函数,在区间(1,3)上不是单调函数,求 的取值范围。

查看答案和解析>>

同步练习册答案