【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整,调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额,依照个人所得税税率表,调整前后的计算方法如下表:
个人所得税税率表(调整前) | 个人所得税税率表(调整后) | ||||
免征额3500元 | 免征额5000元 | ||||
级数 | 全月应纳税所得额 | 税率(%) | 级数 | 全月应纳税所得额 | 税率(%) |
1 | 不超过1500元部分 | 3 | 1 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
某税务部门在某公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
收入(元) | ||||||
人数 | 30 | 40 | 10 | 8 | 7 | 5 |
(1)若某员工2月的工资、薪金等税前收入为7500元时,请计算一下调整后该员工的实际收入比调整前增加了多少?
(2)现从收入在及的人群中按分层抽样抽取7人,再从中选4人作为新纳税法知识宣讲员,用表示抽到作为宣讲员的收入在元的人数,表示抽到作为宣讲员的收入在元的人数,设随机变量,求的分布列与数学期望.
科目:高中数学 来源: 题型:
【题目】某市为了解本市万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,发现其成绩服从正态分布,现从某校随机抽取了名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.
(1)估算该校名学生成绩的平均值(同一组中的数据用该组区间的中点值作代表);
(2)求这名学生成绩在内的人数;
(3)现从该校名考生成绩在的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前名的人数记为,求的分布列和数学期望.
参考数据:若,则,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,a∈R.
(1)若函数f(x)在x=1处的切线为y=2x+b,求a,b的值;
(2)记g(x)=f(x)+ax,若函数g(x)在区间(0,)上有最小值,求实数a的取值范围;
(3)当a=0时,关于x的方程f(x)=bx2有两个不相等的实数根,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚,同时带动了垃圾桶的销售.某垃圾桶生产和销售公司通过数据分析,得到如下规律:每月生产只垃圾桶的总成本由固定成本和生产成本组成,其中固定成本为100万元,生产成本为.
(1)写出平均每只垃圾桶所需成本关于的函数解析式,并求该公司每月生产多少只垃圾桶时,可使得平均每只所需成本费用最少?
(2)假设该类型垃圾桶产销平衡(即生产的垃圾桶都能卖掉),每只垃圾桶的售价为元,满足.若当产量为15000只时利润最大,此时每只售价为300元,试求的值.(利润销售收入成本费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的方程为,是椭圆上的一点,且在第一象限内,过且斜率等于-1的直线与椭圆交于另一点,点关于原点的对称点为.
(1)证明:直线的斜率为定值;
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,直线与抛物线C相切于点P,过点P作抛物线C的割线PQ,割线PQ与抛物线C的另一交点为Q,A为PQ的中点.过A作y轴的垂线与y轴交于点H,与直线l相交于点N,M为线段AN的中点.
(1)求抛物线C的方程;
(2)求证:点M在抛物线C上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了人,将调查情况进行整理后制成下表:
年龄(岁) | ||||||
频数 | ||||||
赞成人数 |
()完成被调查人员的频率分布直方图.
()若从年龄在,的被调查者中各随机选取人进行追踪调查,求恰有人不赞成的概率.
()在在条件下,再记选中的人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com