精英家教网 > 高中数学 > 题目详情
(2012•湖南模拟)某工厂统计资料显示,产品次品率p与日产量n (件)(n∈N+,且1≤n≤98)的关系表如下:
n 1 2 3 4 98
p
2
99
1
49
2
97
1
48
1
又知每生产一件正品盈利a元,每生产一件次品损失
a
2
元(a>0).
(1)将该厂日盈利额T(元)表示为日产量n(件)的一种函数关系式;
(2)为了获得最大盈利,该厂的日产量应定为多少件?(
3
≈1.73).
分析:(1)由题意可知p=
2
100-n
(1≤n≤98,n∈N+).日产量n件中,正品(n-pn)件,从而可得日盈利额函数;
(2)求出日产量函数,利用基本不等式,即可求得结论.
解答:解:(1)由题意可知p=
2
100-n
(1≤n≤98,n∈N+).日产量n件中,正品(n-pn)件,
日盈利额T(n)=a(n-pn)-
a
2
pn=a(n-
3n
100-n
)(1≤n≤98,n∈N+).
(2)
T(n)
a
=3+n-
300
100-n
(a>0)=103-[(100-n)+
300
100-n
]≤103-2
300
≈68.4,当且仅当100-n=
300
100-n

即n=100-10
3
≈82.7,而n∈N+,且
T(82)
a
T(83)
a

故当n=83时,
T(n)
a
取得最大值,即T取得最大值.
点评:本题考查根据实际问题选择函数类型,根据题意列出函数关系式,并考查利用基本不等式求最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判断f(x)的单调性;
(2)记φ(x)=f′(x-1)-k(x-1),若函数φ(x)有两个零点x1,x2(x1<x2),求证:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函数f(x)=
m
n

(1)求函数f(x)的对称中心;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设函数y=f(x)在区间(a,b)的导函数f′(x),f′(x)在区间(a,b)的导函数f″(x),若在区间(a,b)上的f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若当实数m满足|m|≤2时,函数f(x)在区间(a,b)上为“凸函数”,则b-a的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)已知函数f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)已知m∈R,命题p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立;命题q:函数y=(m2-1)x是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设曲线y=xn+1(n∈N)在点(1,1)处的切线与x轴的交点的横坐标为xn,则x1•x2•x3•…•x2012的值为
1
2013
1
2013

查看答案和解析>>

同步练习册答案