精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=$\sqrt{3}$sinxcosx+$\frac{1}{2}$-sin2x.
(1)求函数f(x)的最小正周期和对称中心;
(2)当x∈[0,$\frac{π}{2}$]时,若直线y=ax+b是函数f(x)的切线,求实数a的取值范围.

分析 (1)化简可得f(x)=sin(2x+$\frac{π}{6}$),由周期公式可得最小正周期,解2x+$\frac{π}{6}$=kπ可得对称中心;
(2)由x∈[0,$\frac{π}{2}$]可得f′(x)=2cos(2x+$\frac{π}{6}$)的范围,由切线斜率和导数的关系可得.

解答 解:(1)化简可得f(x)=$\sqrt{3}$sinxcosx+$\frac{1}{2}$-sin2x
=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$),
∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π,
由2x+$\frac{π}{6}$=kπ可得x=$\frac{kπ}{2}-\frac{π}{12}$,
故对称中心为($\frac{kπ}{2}-\frac{π}{12}$,0)k∈Z;
(2)当x∈[0,$\frac{π}{2}$]时2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴f′(x)=2cos(2x+$\frac{π}{6}$)∈[-1,$\frac{\sqrt{3}}{2}$],
∴切线y=ax+b的斜率a的取值范围为[-1,$\frac{\sqrt{3}}{2}$].

点评 本题考查三角函数恒等变换,涉及三角函数的对称性以及导数和切线的关系,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.两单位向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,试向量$\overrightarrow{c}$=2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{d}$=3$\overrightarrow{b}$-$\overrightarrow{a}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若复数z满足(3+4i)z=|3-4i|,其中i为虚数单位,则z的虚部为(  )
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点M(1,2)为抛物线y=2x2上一点,过点M的两条倾斜角互补的直线分别交抛物线于A、B两点.
(1)求证:直线AB的斜率为定值;
(2)若点A、B的横坐标不大于零,求△MAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)由圆x2+y2=4上任意一点向x轴作垂线,求垂线夹在圆周和x轴间的线段中点的轨迹方程;
(2)两根杆分别绕着定点A和B(AB=2a)在平面内转动,并且转动时两杆保持互相垂直,求杆的交点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.圆心坐标为(2,-1)的圆在直线x-y-1=0上截得的弦长为2$\sqrt{2}$,则此圆的方程为(x-2)2+(y+1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设命题p:实数x满足x2-4ax+3a2<0,命题q:实数x满足|x-3|<1.
(1)若a=1,且p∧q为假,求实数x的取值范围;
(2)若a>0,且,¬q是¬p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用区间表示下列集合:
{x|-2≤x<3}=[-2,3);
{x|x<0}=(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC中,角A,B,C的对边分别为a,b,c,若2sinB-sinC=2sin(A-C).
(1)求cosA;
(2)若a=$\sqrt{10}$,b+c=5,求△ABC的面积.

查看答案和解析>>

同步练习册答案