精英家教网 > 高中数学 > 题目详情
(2009•济宁一模)一个几何体的三视图如图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为(  )
分析:由已知中的三视图,我们可以确定该几何体为圆锥,根据正视图与侧视图都是边长为2的正三角形,求出圆锥的底面半径和母线长,代入圆锥侧面积公式,即可得到答案.
解答:解:由已知中三视图可得该几何体为一个圆锥
又由正视图与侧视图都是边长为2的正三角形
故底面半径R=1,母线长l=2
则这个几何体的侧面积S=πRl=2π
故选B
点评:本题考查的知识点是由三视图求面积,其中根据已知中的三视图判断出几何体的形状及圆锥的底面半径和母线长是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•济宁一模)如图,在三棱柱ABC-A1B1C1中,所有的棱长都为2,∠A1AC=60°
(Ⅰ)求证:A1B⊥AC;
(Ⅱ)当三棱柱ABC-A1B1C1的体积最大时,求平面A1B1C1与平面ABC所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)已知向量
a
=(1,2),
b
=(0,1),设
u
=
a
+k
b
v
=2
a
-
b
,若
u
v
,则实数k的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:
①若m⊥n,m⊥α,则n∥α; 
②若m⊥α,n⊥β,m∥n,则α∥β; 
③若m、n是两条异面直线,m?α,n?β,m∥β,n∥α,则α∥β; 
④若α⊥β,α∩β=m,n?β,n⊥m,则n⊥α.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•济宁一模)复数满足z(1+i)=2i,则复数的实部与虚部之差为(  )

查看答案和解析>>

同步练习册答案