精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=sin(2x+$\frac{π}{6}$)+4sin2x.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)设△ABC的内角A,B,C的对边分别为a,b,c.若B为锐角且f(B)=$\frac{7}{2}$,BC边上的中线AD长为2,求△ABC面积的最大值.

分析 (Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得f(x)=$\sqrt{3}$sin(2x-$\frac{π}{3}$)+2,由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z即可解得函数f(x)的单调递减区间.
(Ⅱ)由B为锐角,可得:2B-$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{2π}{3}$),由已知正弦函数的图象和性质可解得B=$\frac{π}{3}$,由余弦定理及基本不等式的应用可得ac≤8,利用三角形面积公式即可得解.

解答 解:(Ⅰ)∵f(x)=sin(2x+$\frac{π}{6}$)+4sin2x
=$\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}$cos2x+2-2cos2x
=$\sqrt{3}$sin(2x-$\frac{π}{3}$)+2.
∴令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z即可解得函数f(x)的单调递减区间为:[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$],k∈Z;
(Ⅱ)∵B为锐角,可得:2B-$\frac{π}{3}$∈(-$\frac{π}{3}$,$\frac{2π}{3}$),
且f(B)=$\sqrt{3}$sin(2B-$\frac{π}{3}$)+2=$\frac{7}{2}$,解得:sin(2B-$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,可得:2B-$\frac{π}{3}$=$\frac{π}{3}$,解得:B=$\frac{π}{3}$.
∴在△ABD中,由余弦定理:AD2=AB2+BD2-2•AB•BD•cosB,可得:4=c2+($\frac{1}{2}a$)2-2×c×$\frac{1}{2}a$×$\frac{1}{2}$,整理可得:16=4c2+a2-2ac≥4ac-2ac=2ac,解得:ac≤8,
∴S△ABC=$\frac{1}{2}$acsinB≤$\frac{1}{2}×8×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$.故△ABC面积的最大值为2$\sqrt{3}$.

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,三角形面积公式,余弦定理及基本不等式的应用,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知|$\overrightarrow{AB}$|=8,|$\overrightarrow{AC}$|=6,∠BAC=$\frac{π}{3}$,$\overrightarrow{AD}$=$\overrightarrow{DB}$,$\overrightarrow{AE}$=2$\overrightarrow{EC}$,线段BE与线段CD交于点G,则|$\overrightarrow{AG}$|的值为(  )
A.4B.$\sqrt{19}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)在区间[a,b]上连续,证明:${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{b}$f(a+b-x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的内角A、B、C、所对的边分别为a、b、c,已知a=1,b=2,cosC=$\frac{1}{4}$.
(Ⅰ)求△ABC的周长;
(Ⅱ)若f(x)=sin(2x+C),求f($\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin4x+2$\sqrt{3}$sinxcosx-cos4x
(1)求函数的最小正周期.
(2)求出该函数在[0,π]上的单调递增区间.
(3)关于x的方程f(x)=k(0<k<2,0≤x≤π)有两个解x1,x2时,求x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,已知圆C经过A(2,-2),B(1,1)两点,且圆心在直线x-2y-2=0上.
(1)求圆C的标准方程;
(2)过圆C内一点P(1,-1)作两条相互垂直的弦EF,GH,当EF=GH时,求四边形EGFH的面积.
(3)设直线l与圆C相交于P,Q两点,PQ=4,且△POQ的面积为$\frac{2}{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.经过平面α外一点和平面α内一点与平面α垂直的平面有 (  )
A.1个B.0个C.无数个D.1个或无数个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知M(2,0),N(0,-2),C为MN中点,点P满足CP=$\frac{1}{2}$MN.
(1)求点P构成曲线的方程.;
(2)是否存在过点(0,-1)的直线l与(1)所得曲线交于点A、B,且与x轴交于点Q,使$\overrightarrow{QA}$•$\overrightarrow{QB}$=3,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.当x=1时,函数f(x)=x3-x2-x-1取得极小值,极小值为-2.

查看答案和解析>>

同步练习册答案