【题目】已知圆经过点A(-2,0),B(0,2),且圆心在直线y=x上,又直线l:y=kx+1与圆相交于P、Q两点.
(1)求圆的方程;
(2)若,求实数k的值;
(3)过点作动直线交圆于,两点.试问:在以为直径的所有圆中,是否存在这样的圆,使得圆经过点?若存在,求出圆的方程;若不存在,请说明理由.
【答案】(1);(2);(3)存在圆或,使得圆经过点.
【解析】
试题分析:(1)根据题意设出圆心和半径,列出和的方程,求得圆的方程;(2)根据,
求得,所以圆心到直线的距离为,求得的值;(3)若圆经过点,则必有即①,当直线的斜率不存在时,显然满足题意得圆,当直线的斜率存在时,设其斜率为,直线的方程为:,代入圆的方程,由韦达定理,得到的值,联立①解得的值,存在所求的圆,进而得到所求的圆的方程.
试题解析:(1)设圆心C(a,a),半径为r.因为圆C经过点A(-2,0),B(0,2),所以|AC|=|BC|=r,易得a=0,r=2,所以圆C的方程是. 3分
(2)因为·=2×2×cos〈,〉=-2,且与的夹角为∠POQ,
所以cos∠POQ=-,∠POQ=120°,所以圆心C到直线l:kx-y+1=0的距离d=1,
又d=,所以. 7分
(联立直线与圆的方程求解酌情给分)
(3)(ⅰ)当直线的斜率不存在时,直线经过圆的圆心,此时直线与圆的交点为,,即为圆的直径,而点在圆上,即圆也是满足题意的圆 8分
(ⅱ)当直线的斜率存在时,设直线,由,
消去整理,得,由△,得或.
设,则有① 9分
由①得, ②
, ③
若存在以为直径的圆经过点,则,所以,
因此,即, 10分
则,所以,,满足题意. 12分
此时以为直径的圆的方程为,
即,亦即. 13分
综上,在以为直径的所有圆中,存在圆:或
,使得圆经过点. 14分
科目:高中数学 来源: 题型:
【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:
时间x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,椭圆C和抛物线y2=x交于M,N两点,且直线MN恰好通过椭圆C的右焦点.
(1)求椭圆C的标准方程;
(2)经过椭圆C右焦点的直线l和椭圆C交于A,B两点,点P在椭圆上,且 =2 ,其中O为坐标原点,求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.
(1)求所取3张卡片上的数字完全相同的概率;
(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c满足a≤b≤c,则称b为这三个数的中位数.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,x1 , x2∈(0, ),且x1<x2 , 则下列结论中正确的是( )
A.(x1﹣x2)[f(x1)﹣f(x2)]<0
B.f( )<f( )
C.x1f(x2)>x2f(x1)
D.x2f(x2)>x1f(x1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 平面平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的偶函数,且当时,.
(1)已画出函数在轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间;
⑵写出函数的解析式和值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com