精英家教网 > 高中数学 > 题目详情

【题目】如果不是等差数列,但若,使得,那么称为“局部等差”数列.已知数列的项数为4,记事件:集合,事件为“局部等差”数列,则条件概率( )

A. B. C. D.

【答案】C

【解析】

分别求出事件与事件的基本事件的个数,用=计算结果.

由题意知,事件共有=120个基本事件,事件“局部等差”数列共有以下24个基本事件,

(1)其中含1,2,3的局部等差的分别为1,2,3,5和5,1,2,3和4,1,2,3共3个, 含3,2,1的局部等差数列的同理也有3个,共6个.

含3,4,5的和含5,4,3的与上述(1)相同,也有6个.

含2,3,4的有5,2,3,4和2,3,4,1共 2个,

含4,3,2的同理也有2个.

含1,3,5的有1,3,5,2和2,1,3,5和4,1,3,5和1,3,5,4共4个,

含5,3,1的也有上述4个,共24个,

=.

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是函数的图象上任意两点,若的中点,且的横坐标为

1)求

2)若,求

3)已知数列的通项公式),数列的前项和为,若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,对任意的正整数n,都有成立,记.

(1)求数列与数列的通项公式;

(2)求证:①恒成立.恒成立,其中为数列的前n项和.

(3)记的前n项和,求证:对任意正整数n,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线经过点.

1)求抛物线的方程及其准线方程;

2)设为原点,过抛物线的焦点作斜率不为0的直线交抛物线于两点,直线分别交直线于点和点.求证:以为直径的圆经过轴上的两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:①方程表示的图形是一个点;②命题,则为真命题;③已知双曲线的左右焦点分别为,过右焦点被双曲线截得的弦长为4的直线有3;④已知椭圆上有两点,若点是椭圆上任意一点,且,直线的斜率分别为,则为定值.

其中说法正确的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数在点处有公共的切线,设.

1 的值

2)求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道,且两边是两个关于走道对称的三角形().现考虑方便和绿地最大化原则,要求点与点均不重合,落在边上且不与端点重合,设.

(1)若,求此时公共绿地的面积;

(2)为方便小区居民的行走,设计时要求的长度最短,求此时绿地公共走道的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的众数是83,乙班学生成绩的平均数是86,则的值为( )

A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数.

I)若,求实数的取值范围;

II)当时,讨论方程上的解的个数.

查看答案和解析>>

同步练习册答案