精英家教网 > 高中数学 > 题目详情

已知函数数学公式数学公式).
(Ⅰ)当曲线y=f(x)在(1,f(1))处的切线与直线l:y=-2x+1平行时,求a的值;
(Ⅱ)求函数f(x)的单调区间.

解:,x>-1,(2分)
(I)由题意可得,解得a=3,(3分)
因为f(1)=ln2-4,此时在点(1,f(1))处的切线方程为y-(ln2-4)=-2(x-1),
即y=-2x+ln2-2,与直线l:y=-2x+1平行,故所求a的值为3.(4分)
(II)令f'(x)=0,得到
可知,即x1≤0.(5分)
①即时,
所以,,(6分)
故f(x)的单调递减区间为(-1,+∞).(7分)
②当时,(6分),即-1<x1<0=x2
所以,在区间和(0,+∞)上,f′(x)<0;(8分)
在区间上,f′(x)>0.(9分)
故f(x)的单调递减区间是和(0,+∞),单调递增区间是.(10分)
③当a≥1时,
所以,在区间(-1,0)上f'(x)>0;(11分)
在区间(0,+∞)上f'(x)<0,(12分)
故f(x)的单调递增区间是(-1,0),单调递减区间是(0,+∞).(13分)
综上讨论可得:
时,函数f(x)的单调递减区间是(-1,+∞);
时,函数f(x)的单调递减区间是和(0,+∞),单调递增区间是
当a≥1时,函数f(x)的单调递增区间是(-1,0),单调递减区间是(0,+∞).
分析:(Ⅰ)由题设条件,求出函数的导数,由于曲线y=f(x)在(1,f(1))处的切线与直线l:y=-2x+1平行时,由导数的几何意义建立关于参数a的方程求出其值即可.
(Ⅱ)由函数的导数中存在参数a,它的取值范围对函数的单调性有影响,故要对其进行分类讨论,在确定的范围下求出函数的单调区间.
点评:本题考查利用导数研究曲线上某点处的切线方程,求解本题的重点是理解导数的几何意义以及分类讨论的思想方法,分类讨论的思想在高中数学中用途广泛,其特点是在解题中出现了不确定情况,由分类变不确定为确定.本题运算量较大,思维量也大,易因为马虎或者耐心不够而出错,造成解题失败,做题时要养成好习惯,要严谨,认真.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2-2x+c在x=-2时有极大值6,在x=1时有极小值,
(1)求a,b,c的值;
(2)求f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
a•sinx•cosx•cos2x-6cos22x+3
,且f(
π
24
)=0

(Ⅰ)求函数f(x)的周期T和单调递增区间;
(Ⅱ)若f(θ)=-3,且θ∈(-
24
π
24
)
,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=asinx+bcosx+c的图象上有一个最低点(
11π
6
,-1)

(Ⅰ)如果x=0时,y=-
3
2
,求a,b,c.
(Ⅱ)如果将图象上每个点的纵坐标不变,横坐标缩小到原来的
3
π
,然后将所得图象向左平移一个单位得到y=f(x)的图象,并且方程f(x)=3的所有正根依次成为一个公差为3的等差数列,求y=f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-4,设曲线y=f(x)在点(xn,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N*),其中x1为正实数.
(Ⅰ)用xn表示xn+1
(Ⅱ)若x1=4,记an=lg
xn+2xn-2
,证明数列{an}成等比数列,并求数列{xn}的通项公式;
(Ⅲ)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则函数f(x)的解析式为(  )
A、f(x)=2sin(
1
2
x+
π
6
)
B、f(x)=2sin(
1
2
x-
π
6
)
C、f(x)=2sin(2x-
π
6
)
D、f(x)=2sin(2x+
π
6
)

查看答案和解析>>

同步练习册答案