精英家教网 > 高中数学 > 题目详情
13.函数f(x)=loga|x|在(-∞,0)上单调递增,则f(-3)与f(2)的大小关系是(  )
A.f(-3)=f(2)B.f(-3)>f(2)C.f(-3)<f(2)D.不能确定

分析 先分析函数的奇偶性,进而结合函数f(x)=loga|x|在(-∞,0)上单调递增,可得答案.

解答 解:∵函数f(x)=loga|x|满足f(-x)=f(x),
故f(2)=f(-2),
又∵函数f(x)=loga|x|在(-∞,0)上单调递增,
∴f(-3)<f(-2),
即f(-3)<f(2),
故选:C

点评 本题考查的知识点是函数单调性的性质,函数的奇偶性,是函数图象和性质的简单综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若用列举法表示集合A={x|x<5,x∈N*},则集合A={1,2,3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.计算:tan45°+cos60°÷lne=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=$\left\{\begin{array}{l}{4x-4,x≤1}\\{{x}^{2}-4x+3,x>1}\end{array}\right.$,g(x)=-$\frac{1}{x}$,则函数h(x)=f(x)-g(x)的零点个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l过圆x2+y2-6y+5=0的圆心,且与直线x+y+5=0平行,则l的方程是(  )
A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1(-3,0)、F2(3,0),直线y=kx与椭圆交于A、B两点.
(1)若三角形AF1F2的周长为$4\sqrt{3}+6$,求椭圆的标准方程;
(2)若$2\sqrt{3}<a<3\sqrt{2}$,且以AB为直径的圆过椭圆的右焦点,求直线y=kx斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={x|x2-x=0},B={x|log2x≤0},则A∪B=(  )
A.{1}B.[0,1]C.(0,1]D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某中学从文、理科实验班中各选6名同学去参加复旦大学自主招生考试,其数学成绩茎叶图如图,其中文科生的成绩的众数为85,理科生成绩平均数为81,则x•y的值为(  )
A.9B.20C.5D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$z=\frac{1-3i}{1+i}$的模是(  )
A.2B.1C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案