【题目】某学生对函数的性质进行研究,得出如下的结论:
①函数在上单调递增,在上单调递减;
②点是函数图像的一个对称中心;
③存在常数,使对一切实数均成立;
④函数图像关于直线对称.其中正确的结论是__________.
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).
(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;
(2)若bn=an+2n+1,数列{bn}的前n项和为Tn..
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线 的极坐标方程为 ,直线 的参数方程为
( 为参数, 为直线的倾斜角).
(1)写出直线 的普通方程和曲线 的直角坐标方程;
(2)若直线 与曲线 有唯一的公共点,求角 的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是( )
A.[ , +∞)
B.[ , +∞)
C.[ , +∞)
D.[ , +∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在[0,1]上的函数f(x)满足:
①f(0)=f(1)=0;
②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对定义域分别是、的函数,,一个函数:.
(Ⅰ)若,,写出函数的解析式;
(Ⅱ)在(Ⅰ)的条件下,若恒成立,求实数的取值范围;
(Ⅲ)当,时,若函数有四个零点,分别为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═ 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是( )
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.
(1)请写出程序框图所表示的函数表达式;
(2)求输出的y(y<5)的概率;
(3)求输出的y(6<y≤8)的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com