精英家教网 > 高中数学 > 题目详情

【题目】某学生对函数的性质进行研究,得出如下的结论:

①函数上单调递增,在上单调递减;

②点是函数图像的一个对称中心;

③存在常数,使对一切实数均成立;

④函数图像关于直线对称.其中正确的结论是__________

【答案】

【解析】分析:利用函数的性质逐一判断一下命题的正确性.

详解:对于①,f(x)=2xcosx为奇函数,则函数f(x)在[﹣π,0],[0,π]上单调性相同,所以

对于②,由于f(0)=0,f(π)=﹣2π,说明两点并不关于点中心对称,所以

对于③,|f(x)|=|2xcosx|=|2x||cosx|≤2|x|,令M=2,则|f(x)|≤M|x|对一切实数x均成立,所以

对于④,由 f(0)=0,f(2π)=4π,说明两点并不关于直线对称,所以错.

故答案为:③.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*).

(1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式;

(2)若bn=an+2n+1,数列{bn}的前n项和为Tn..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点, 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线 的极坐标方程为 ,直线 的参数方程为
为参数, 为直线的倾斜角).
(1)写出直线 的普通方程和曲线 的直角坐标方程;
(2)若直线 与曲线 有唯一的公共点,求角 的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是(  )
A.[ , +∞)
B.[ , +∞)
C.[ , +∞)
D.[ , +∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在[0,1]上的函数f(x)满足:
①f(0)=f(1)=0;
②对所有x,y∈[0,1],且x≠y,有|f(x)﹣f(y)|< |x﹣y|.
若对所有x,y∈[0,1],|f(x)﹣f(y)|<m恒成立,则m的最小值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为( )

A. 15 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对定义域分别是的函数一个函数.

(Ⅰ)写出函数的解析式

(Ⅱ)(Ⅰ)的条件下恒成立求实数的取值范围

(Ⅲ)时,若函数有四个零点分别为的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x的取值范围为[0,10],给出如图所示程序框图,输入一个数x.
(1)请写出程序框图所表示的函数表达式;
(2)求输出的y(y<5)的概率;
(3)求输出的y(6<y≤8)的概率.

查看答案和解析>>

同步练习册答案