精英家教网 > 高中数学 > 题目详情
14.算式:x2+$\frac{1}{{x}^{2}+2}$的最小值是$\frac{1}{2}$.

分析 设t=x2+2,t≥2,则x2+$\frac{1}{{x}^{2}+2}$=t+$\frac{1}{t}$-2,设f(t)=t+$\frac{1}{t}$-2,利用导数研究其单调性即可得出.

解答 解:设t=x2+2,t≥2,
则x2+$\frac{1}{{x}^{2}+2}$=t+$\frac{1}{t}$-2,
设f(t)=t+$\frac{1}{t}$-2,
∴f′(t)=1-$\frac{1}{{t}^{2}}$>0恒成立,
∴f(t)在[2,+∞)为增函数,
∴f(t)min=f(2)=2+$\frac{1}{2}$-2=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$.

点评 本题考查了利用导数研究函数的单调性极值与最值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设A(3,3,1),B(1,0,5),则A,B的距离为$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆4x2+5y2=1的左、右焦点为F,F′,过F′的直线与椭圆交于M,N,则△MNF的周长为(  )
A.2B.4C.$\frac{4\sqrt{5}}{5}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某军区老干部休养所(简称军干所)为纪念抗战胜利70周年,举行老干部捐赠抗战纪念品教育下一代的活动,随机抽取a名老干部为样本,得到这些老干部捐赠抗战纪念品的个数,根据此数据作出了频率分布表:
分组频数频率
[1,5)50.2
[6,10)15m
[11,15)nP
[16,20)10.04
合计a1
(1)求出表中m,n,p,a的值;
(2)军干所决定对捐赠抗战纪念品的老干部进行表彰,对捐赠抗战纪念品数在[16,20]区间的老干部发放价值400元的奖品,对捐赠抗战纪念品数在[11,15]区间的老干部发放价值300元的奖品,对捐赠抗战纪念品数在[6,10]区间的老干部发放价值200元的奖品,对捐赠抗战纪念品数在[1,5]区间的老干部发放价100元的奖品,在所取样本中,任意抽取2人,并设x为此二人所获得奖品价值之差的绝对值,求x的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等差数列{an}中,前三项分别为x,2x,5x-4,前n项和为Sn,且Sk=110,求x和k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知定义域为R的函数f(x)=$\frac{-{2}^{x}+b}{{2}^{x+1}+a}$是奇函数.
(1)求a、b的值;
(2)若对任意的x∈[0,$\frac{π}{2}$],不等式f(cos22x)+f(3sin2x-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知抛物线E:y2=2px(p>0)上一点M(x0,4)到交点F的距离|MF|=$\frac{5}{4}$x0
(1)求E的方程;
(2)过F的直线l与E相交于A、B两点,AB的垂直平分线l′与E相较于C、D两点,若$\overrightarrow{AC}$•$\overrightarrow{AD}$=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若两平行直线2x+y-4=0与y=-2x-m-2间的距离不大于$\sqrt{5}$,则m的取值范围是(  )
A.[-11,-1]B.[-11,0]C.[-11,-6]∪(-6,-1]D.[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式x(|x|-1)<0的解集是(  )
A.(-∞,-1)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

同步练习册答案