精英家教网 > 高中数学 > 题目详情
9.要做一个母线长为30cm的圆锥形的漏斗,要使其体积最大,则其底面半径为10$\sqrt{6}$cm.

分析 设出圆锥的高,求出底面半径,推出体积的表达式,利用导数求出体积的最大值时的高即可.

解答 解:设圆锥的高为h cm,
∴V圆锥=$\frac{1}{3}$π(900-h2)×h,
∴V′(h)=$\frac{1}{3}$π(900-3h2).令V′(h)=0,
得h2=300,∴h=10$\sqrt{3}$(cm)
当0<h<10$\sqrt{3}$时,V′>0;
当10$\sqrt{3}$<h<30时,V′<0,
∴当h=10$\sqrt{3}$,r=10$\sqrt{6}$cm时,V取最大值.
故答案为10$\sqrt{6}$.

点评 本题考查旋转体问题,以及利用导数求函数的最值问题,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设命题 p:?n∈N,3n≥n2+1,则¬p为(  )
A.?n∈N,3n<n2+1B.$?{n_0}∈N,{3^{n_0}}<n_0^2+1$
C.?n∈N,3n≤n2+1D.$?{n_0}∈N,{3^{n_0}}≥n_0^2+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,关于正方体ABCD-A1B1C1D1,下面结论错误的是(  )
A.BD⊥平面ACC1A1
B.AC⊥BD
C.A1B∥平面CDD1C1
D.该正方体的外接球和内接球的半径之比为2:1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2sinx(cosx+sinx)-1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,a、b、c分别为A、B、C所对的边,且2acosB+bcosA=2c,则△ABC是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.斜三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-alnx-1(a∈R)
(1)求函数f(x)的单调区间;
(2)当x≥2时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知两个圆O1和O2,它们的半径分别是2和4,且|O1O2|=8,若动圆M与圆O1内切,又与O2外切,则动圆圆心M的轨迹方程是(  )
A.B.椭圆C.双曲线一支D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,若z=a(4x+2y)+b(a>0,b>0)的最大值为7,则$\frac{6}{a}$+$\frac{1}{b}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知抛物线C与双曲线x2-y2=1有相同的焦点,且顶点在原点,则抛物线C的方程为(  )
A.y2=±2$\sqrt{2}$xB.y2=±2xC.y2=±4xD.y2=±4$\sqrt{2}$x

查看答案和解析>>

同步练习册答案