精英家教网 > 高中数学 > 题目详情
已知函数φ(x)=+1,f(x)=(a+b)x-ax-bx,其中a,b∈N+,a≠1,b≠1,a≠b,且ab=4,

(1)求函数φ(x)的反函数g(x);

(2)对任意n∈N+,试指出f(n)与g(2n)的大小关系,并证明你的结论.

思路分析:欲比较f(n)与g(2n)的大小,需求出f(n)与g(2n)的关于n的表达式,以利于特殊探路——从n=1,2,3,…中寻找、归纳一般性结论,再用数学归纳法证明.

解:(1)由y=+1,得=y-1(y≥1),

有x+1=(y-1)2,即x=y2-2y,故g(x)=x2-2x(x≥1).

(2)∵f(n)=(a+b)n-an-bn,g(2n)=4n-2n+1,

当n=1时f(1)=0,g(2)=0,有f(1)=g(2).

当n=2时,f(2)=(a+b)2-a2-b2=2ab=8,

g(22)=42-23=8,f(2)=g(22).

当n=3时,f(3)=(a+b)3-a3-b3=3a2b+3ab2=3ab(a+b)

>3ab×=48.

g(23)=43-24=48,有f(3)>g(23).

当n=4时,f(4)=(a+b)4-a4-b4

=4a3b+4ab3+6a2b2

=4ab(a2+b2)+6a2b2

>4ab×2ab+6a2b2

=14a2b2=224.

g(24)=44-25=224,有f(4)>g(24),由此推测当1≤n≤2时,f(n)=g(2n),

当n≥3时,f(n)>g(2n).

下面用数学归纳法证明.

(1)当n=3时,由上述推测成立;

(2)假设n=k时,推测成立.即f(k)>g(2k)(k≥3),

即(a+b)k-ak-bk>4k-2k+1,

那么f(k+1)=(a+b)k+1-ak+1-bk+1

=(a+b)·(a+b)k-a·ak-b·bk

=(a+b)[(a+b)k-ak-bk]+akb+abk.

又依题设a+b>2ab=4.

akb+abk=2(ab)=2k+2,

有f(k+1)>4[(a+b)k-ak-bk]+2k+2>4(4k-2k+1)+2k+2

=4k+1-2k+2=g(2k+1),

即n=k+1时,推测也成立.

    由(1)(2)知n≥3时,f(n)>g(2n)都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数φ(x)=
a
x+1
,a为正常数.
(1)若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数?(x)=
a
x+1
,a为正常数.
(1)若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)的单调增区间;
(2)在(1)中当a=0时,函数y=f(x)的图象上任意不同的两点A(x1,y1),B(x2,y2),线段AB的中点为C(x0,y0),记直线AB的斜率为k,试证明:k>f'(x0).
(3)若g(x)=|lnx|+φ(x),且对任意的x1,x2∈(0,2],x1≠x2,都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数x≤0时,f(x)=2x,x>0时,f(x)=log
13
x
,则函数y=f[f(x)]-1的零点个数有
3
3
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数φ(x)=
a
x+1
,a为正常数.
(Ⅰ)若f(x)=lnx+φ(x),且a=
9
2
,求函数f(x)的单调减区间;
(Ⅱ)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有
g(x2)-g(x1)
x2-x1
<-1
,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数φ(x)=log
1
2
x
与函数g(x)的图象关于y=x对称,若g(a)g(b)=2,且a<0,b<0,则
4
a
+
1
b
的最大值为
-9
-9

查看答案和解析>>

同步练习册答案