精英家教网 > 高中数学 > 题目详情
(1)A=N,B=R.f:x→y=
2x-1
2x+1
x∈A,y∈B,f的作用下,
11
13
的原象是多少?14的象是多少?
(2)设集合A=N,B={偶数},映射f:A→B把集合A中的元素a映射到集合B中的元素a2-a,则在映射f下,象20的原象是多少?
(3)f:A→B映射,其中A=R,B=(x,y)|x,y∈R,f:x→(x+1,x2+1)则A元素
2
的象是多少?B元素(2,2)少?
分析:(1)由
2x-1
2x+1
=13
,解得x=6即为所求.
(2)由a2-a=20,解得a 值,再根据a∈N,求得a即为所求.
(3)把x=
2
代入(x+1,x2+1),可得
2
的象,由
x+1=2
x2+1=2
,解得x值即为(2,2)的原象.
解答:解:(1)由
2x-1
2x+1
=13
,解得 x=6,故
11
13
的原象是6;
2×14-1
2×14+1
=
27
29
,故14的象是
27
29

(2)由a2-a=20,解得a=5 或 a=-4,
又a∈N,故a=5,即20的原象是5.
(3)
2
的象是(
2
+1,3),
x+1=2
x2+1=2
,解得x=1,
故(2,2)的原象是1.
点评:本题考查映射的定义,像与原像的定义,让学生不仅会求指定元素象与原象,而且明确求象与原象的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当a=2,b=
2
时,数列{bn}中的任意三项都不能构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列集合A到集合B的对应中,判断哪些是A到B的映射?判断哪些是A到B的一一映射?
(1)A=N,B=Z,对应法则f:x→y=-x,x∈A,y∈B.
(2)A=R+,B=R+f:x→y=
1x
,x∈A,y∈B.
(3)A=a|0°<α≤9°,B=x|0≤x≤1,对应法则f:取正弦.
(4)A=N+,B={0,1},对应法则f:除以2得的余数.
(5)A={-4,-1,1,4},B={-2,-1,1,2},对应法则f:x→y=|x|2,x∈A,y∈B.
(6)A={平面内边长不同的等边三角形},B={平面内半径不同的圆},对应法则f:作等边三角形的内切圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)A=N,B=R.f:x→数学公式x∈A,y∈B,f的作用下,数学公式的原象是多少?14的象是多少?
(2)设集合A=N,B={偶数},映射f:A→B把集合A中的元素a映射到集合B中的元素a2-a,则在映射f下,象20的原象是多少?
(3)f:A→B映射,其中A=R,B=(x,y)|x,y∈R,f:x→(x+1,x2+1)则A元素数学公式的象是多少?B元素(2,2)少?

查看答案和解析>>

同步练习册答案