精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=2时,求不等式f(x)<g(x)的解集;
(2)设a> ,且当x∈[ ,a]时,f(x)≤g(x),求a的取值范围.

【答案】
(1)解:由|2x﹣1|+|2x+2|<x+3,得:

得x∈

得0<x≤

综上:不等式f(x)<g(x)的解集为


(2)解:∵a> ,x∈[ ,a],

∴f(x)=4x+a﹣1

由f(x)≤g(x)得:3x≤4﹣a,即x≤

依题意:[ ,a](﹣∞, ]

∴a≤ 即a≤1

∴a的取值范围是( ,1]


【解析】(1)对x分类讨论,去掉绝对值符号解出即可得出.(2)当a> ,x∈[ ,a],时,f(x)=4x+a﹣1,不等式f(x)≤g(x)化为3x≤4﹣a,化简利用a的取值范围即可得出.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sinxcos2x,则下列结论中错误的为(
A.点(π,0)是函数y=f(x)图象的一个对称中心
B.直线x= 是函数y=f(x)图象的一条对称轴
C.π是函数y=f(x)的周期
D.函数y=f(x)的最大值为1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)= sinxcosx+sin2x的图象上各点的纵坐标不变,横坐标变为原来的2倍,再沿x轴向右平移 个单位,得到函数y=g(x)的图象,则y=g(x)的一个递增区间是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+alnx﹣x(a≠0),g(x)=x2 . (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对于任意的a∈(1,+∞),总存在x1 , x2∈[1,a],使得f(x1)﹣f(x2)>g(x1)﹣g(x2)+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB,b=2,则△ABC面积的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e为自然对数的底数,若f(1)=0,f′(x)是f(x)的导函数,函数f′(x)在区间(0,1)内有两个零点,则a的取值范围是(
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设M、N、T是椭圆 上三个点,M、N在直线x=8上的摄影分别为M1、N1
(Ⅰ)若直线MN过原点O,直线MT、NT斜率分别为k1 , k2 , 求证k1k2为定值.
(Ⅱ)若M、N不是椭圆长轴的端点,点L坐标为(3,0),△M1N1L与△MNL面积之比为5,求MN中点K的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]

已知函数f(x)=|2x﹣1|+|2x+1|.
(Ⅰ)若不等式f(x)≥a2﹣2a﹣1恒成立,求实数a的取值范围;
(Ⅱ)设m>0,n>0且m+n=1,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥A﹣BCD中,平面ABC⊥平面BCD,△BAC与BCD均为等于直角三角形,且∠BAC=∠BCD=90°,BC=2,点P是线段AB上的动点,若线段CD上存在点Q,使得异面直线PQ与AC成30°的角,则线段PA长的取值范围是(
A.(0,
B.[0, ]
C.(
D.(

查看答案和解析>>

同步练习册答案