精英家教网 > 高中数学 > 题目详情

【题目】F1F2分别是椭圆的左、右焦点,过的直线相交 于AB两点,且|AF2||AB||BF2|成等差数列.

1)求|AB|

2)若直线的斜率为1,求实数的值.

【答案】12

【解析】

试题(1)因为|AF2||AB||BF2|成等差数列,可得|AF2|+|BF2|=2|AB|,又|AF2|+|A B|+|BF2|=4,求出|AB|的长;

2)已知L的方程式为y=x+c,其中,联立直线和椭圆的方程,设出,利用韦达定理,求出b的值.

试题解析:(1)由椭圆定义知|AF2||AB||BF2|4

2|AB||AF2||BF2|,得|AB|

2)因为左焦点,设l的方程为yxc,其中

Ax1y1),Bx2y2),则AB两点坐标满足方程组

化简,得(1b2x22cx12b20

因为直线AB的斜率为1,所以

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了得到函数的图象,需对函数的图象所作的变换可以为( )

A. 先将图象上所有点的横坐标压缩为原来的,纵坐标不变,再向右平移个单位

B. 先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变

C. 先向左平移个单位,再将图象上所有点的横坐标压缩为原来的,纵坐标不变

D. 先向右平移个单位,再将图象上所有点的横坐标伸长为原来的3倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某种设备使用的年限(年)与所支出的维修费用(万元)有以下统计资料:

使用年限

2

3

4

5

6

维修费用

2

4

5

6

7

若由资料知呈线性相关关系.试求:

1)求

2)线性回归方程

3)估计使用10年时,维修费用是多少?

附:利用最小二乘法计算的值时,可根据以下公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为,作平面与底面不平行与棱分别交于EFGH,记EAFBGCHD分别为,若,则多面体EFGHABCD的体积为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为为参数以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,且圆心C在直线l上.

求直线l的直角坐标方程及圆C的极坐标方程;

是直线l上一点,是圆C上一点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程及曲线的直角坐标方程,并指出两曲线的轨迹图形;

(2)曲线与两坐标轴的交点分别为,点在曲线上运动,当曲线与曲线相切时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中的项按顺序可以排列成如图的形式,第一行项,排;第二行项,从左到右分别排;第三行项,……以此类推,设数列的前项和为,则满足的最小正整数的值为( )

4,

4,43

4,43,4

4,43,4 , 4

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其定义域上恰有两个零点,则正实数a的值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex有两个极值点.

(1)求实数a的取值范围;

(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.

查看答案和解析>>

同步练习册答案