精英家教网 > 高中数学 > 题目详情
14.若E,F,G分别为正三角形ABC的边AB,BC,CA的中点,以△EFG为底面,把△AEG,△BEF,△CFG折起使A,B,C重合为一点P,则下列关于线段PE与FG的论述不正确的为(  )
A.垂直B.长度相等C.异面D.夹角为60°

分析 由题意三棱锥P-EFG为正四面体,则线段PE与FG长度相等且异面垂直,即可得出结论.

解答 解:由题意三棱锥P-EFG为正四面体,则线段PE与FG长度相等且异面垂直,
故选D.

点评 本题考查正四面体的性质,考查平面图形的翻折,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知sinα+cosα=$\frac{\sqrt{3}}{2}$,且α∈(0,π),则sin2α的值为(  )
A.-$\frac{\sqrt{15}}{4}$B.-$\frac{1}{4}$C.$\frac{\sqrt{15}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)=$\left\{\begin{array}{l}{x+1,(x>0)}\\{π,(x=0)}\\{0,(x<0)}\end{array}\right.$,则f(f(f(-1)))=(  )
A.0B.π+1C.πD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=f′(1)x3-2x2+3,则f′(1)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过两点A(2,1)和B(3,m)直线的斜率为1,则实数m的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设p:函数f(x)=x3e3ax在区间(0,2]上单调递增;q:函数g(x)=ax-$\frac{a}{x}$+2lnx在其定义域上存在极值.
(1)若p为真命题,求实数a的取值范围;
(2)如果“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.
(1)求证:MN⊥平面A1BC;
(2)求直线BC1和平面A1BC所成角的大小;
(3)求二面角A-BC-A1的平面的余弦值;
(4)求点B1到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.化3$\sqrt{3\sqrt{3\sqrt{3}}}$为分数指数幂结果是(  )
A.3${\;}^{\frac{7}{8}}$B.3${\;}^{\frac{15}{8}}$C.3${\;}^{\frac{7}{4}}$D.3${\;}^{\frac{17}{8}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若等差数列{an}满足a1+a2+a2015+a2016=3,则{an}的前2016项之和S2016=(  )
A.1506B.1508C.1510D.1512

查看答案和解析>>

同步练习册答案