精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)在R上单调递增,当x1+x2=1时,恒有f(x1)+f(0)>f(x2)+f(1),则x1的取值范围是(  )
A.(-∞,0)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,+∞)

分析 由函数为递增函数,不妨以y=x为例,可得出x1-x2>1-0,进而求出x1>1.

解答 解:函数f(x)在R上单调递增,且恒有f(x1)+f(0)>f(x2)+f(1),
不妨以y=x为例,做出函数图象如图:

∴f(x1)-f(x2)>f(1)-f(0),
∴x1-x2>1-0,即x1-(1-x1)>1,2x1>2,
∴x1>1.
故选D.

点评 考查了抽象函数递增的性质,难点是对题意的理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设函数$f(x)=\left\{\begin{array}{l}1+{log_2}(2-x),x<1\\{2^{x-1}},x≥1\end{array}\right.$f(-2)+f(log210)=(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某批发站全年分批购入每台价值为3000元的电脑共4000台,每批都购入x台,且每批均需付运费360元,储存电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费共43600元,现在全年只有24000元资金可以用于支付这笔费用,请问能否恰当安排进货数量使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.不等式|x|(a-x)≥9在x∈[2,+∞)总有解,则a的范围是[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)、g(x)、h(x)均为一次函数.若对实数x满足:
|f(x)|-|g(x)|+h(x)=$\left\{\begin{array}{l}{-2,x<-1}\\{7x+5,-1≤x<0}\\{-4x+5,x≥0}\end{array}\right.$,h(x)的解析式为.
A.2x-$\frac{3}{2}$B.-2x-$\frac{3}{2}$C.2x+$\frac{3}{2}$D.-2x+$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知x满足-3≤log${\;}_{\frac{1}{2}}$x≤$\frac{1}{2}$,f(x)=log2$\frac{x}{4}$log2$\frac{x}{2}$,
(1)令t=log2x,求t的取值范围;
(2)求f(x)的最大值和最小值及相对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知0<x<1,0<a<1,试比较|loga(1-x)|和|loga(1+x)|的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(ωx+$\frac{π}{4}$)cos(ωx-$\frac{π}{4}$)+cos(ωx+$\frac{π}{4}$)sin(ωx-$\frac{π}{4}$)(ω>0)的最小正周期为24π,则f(π)=$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn是各项均为正数的数列{an}的前n项和,且对于任意n∈N*,均有2Sn=a2n+an成立.数列(bn}满足an=log2bn
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)记dn=5an-bn,若已知存在正整数M,使得对一切n∈N*,dn≤M恒成立,请猜测M的最小值,并通过研究数列{dn}的单调性证明你的猜测.

查看答案和解析>>

同步练习册答案