精英家教网 > 高中数学 > 题目详情
13.y=log${\;}_{\frac{1}{2}}$(-x2+3x-2)的增区间是[$\frac{3}{2}$,2).

分析 令t=-x2+3x-2,则y=log${\;}_{\frac{1}{2}}$t,分析内外函数的单调性,结合函数的定义域,可得答案.

解答 解:由-x2+3x-2>0得:x∈(1,2),
令t=-x2+3x-2,则y=log${\;}_{\frac{1}{2}}$t,
由y=log${\;}_{\frac{1}{2}}$t为减函数,t=-x2+3x-2在[$\frac{3}{2}$,2)上为减函数,
故y=log${\;}_{\frac{1}{2}}$(-x2+3x-2)的增区间是[$\frac{3}{2}$,2),
故答案为:[$\frac{3}{2}$,2).

点评 本题考查的知识点是对数函数的图象和性质,复合函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.圆台轴截面的两条对角线互相垂直,上、下地面半径之比为3:4,高为14$\sqrt{2}$,则母线长为(  )
A.10$\sqrt{3}$B.25C.10$\sqrt{2}$D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若A={y|$\frac{x}{4}$+$\frac{y}{3}$=1},B={x|16x2-9y2=-144},则A∩B=R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足an+1=a${\;}_{n}^{2}$-nan+1,且a1=2.
(1)计算a2,a3,a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明;
(2)求证:2nn≤a${\;}_{n}^{n}$<3nn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆的中心是坐标原点O,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,短轴长为2,定点A(2,0),点P在已知椭圆上,动点Q满足$\overrightarrow{OQ}$=$\overrightarrow{OA}$+$\overrightarrow{OP}$.
(1)求动点Q的轨迹方程;
(2)过椭圆右焦点F的直线与椭圆交于点M,N,当|MN|最小时,求△AMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a>0,且a≠1,已知函数f(x)=loga$\frac{1-bx}{x-1}$是奇函数
(Ⅰ)求实数b的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)当x∈(1,a-2)时,函数f(x)的值域为(1,+∞),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数$f(x)=x-\frac{16}{x}$,则不等式xf(x)≤0的解集为(  )
A.[-4,0)∪(0,4]B.(-4,4)C.[-4,4]D.(-∞,4)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知是椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{16}$=1的两个焦点,P是椭圆上的一点,若∠F1PF2=$\frac{π}{3}$,则△F1PF2面积为$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的标准方程为(  )
A.$\frac{x^2}{4}+{y^2}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{y^2}{4}+{x^2}=1$D.$\frac{y^2}{4}+\frac{x^2}{3}=1$

查看答案和解析>>

同步练习册答案