精英家教网 > 高中数学 > 题目详情
设a,b,x,y∈R+,且x2+y2=r2(r>0),求证:
a2x2+b2y2
+
a2y2+b2x2
≥r(a+b).
分析:设z1=ax+byi,z2=bx+ayi(a,b,x,y∈R+),则
a2x2+b2y2
+
a2y2+b2x2
=|z1|+|z2|≥|z1+z2|,再利用|z1+z2|=|(a+b)x+(a+b)yi|=|(a+b)(x+yi)|=(a+b)•r,命题得证.
解答:证明:令复数z1=ax+byi,复数z2═bx+ayi(a,b,x,y∈R+)
,则问题化归为证明:|z1|+|z2|≥r(a+b).
设z1=ax+byi,z2=bx+ayi(a,b,x,y∈R+),则
a2x2+b2y2
+
a2y2+b2x2
=|z1|+|z2|≥|z1+z2|
=|(a+b)x+(a+b)yi|=|(a+b)(x+yi)|=(a+b)•r.
故不等式成立.
点评:本题考查复数代数形式及其几何意义,不等式的证明方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a,b,x,y∈R且满足a2+b2=m,x2+y2=n,求ax+by的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,x,y∈R+,且a2+b2=1,x2+y2=1,试证:ax+by≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,x,y∈R+
3x-y-6≤0
x-y+2≥0
,若z=ax+by的最大值为2,则
2
α
+
3
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设a,b,x,y∈R+,且a2+b2=1,x2+y2=1,试证:ax+by≤1.

查看答案和解析>>

同步练习册答案