精英家教网 > 高中数学 > 题目详情

【题目】已知是等差数列,满足,数列满足,且为等比数列.

(1)求数列的通项公式;

(2)求数列的前n项和.

【答案】(1) (2)n(n+1)+2n-1

【解析】试题分析:(1)将等差数列的已知条件化简为首项和公差表示,求出基本量得到通项公式,借助于为等比数列,求出通项公式bn-an=(b1-a1)qn-1=2n-1,进而得到通项;(2)根据数列的通项公式可知求和时采用分组求和,分为等差等比数列各一组分别求和

试题解析:

(1)设等差数列的公差为d,由题意得d= ,所以

设等比数列 的公比为q,由题意得 所以bn-an=(b1-a1)qn-1=2n-1,从而 .

(2)由(1)可知,数列 的前n项n(n+1),数列的前n项和为2n-1 所以数列的前n项和为n(n+1)+2n-1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 ).

(Ⅰ)求函数的单调增区间;

(Ⅱ)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】Sn为数列{an}的前n项和,Sn=2an﹣2(nN+

(1)求{an}的通项公式;

(2)若bn=3nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,与轴不重合的直线经过左焦点,且与椭圆相交于 两点,弦的中点为,直线与椭圆相交于 两点.

(Ⅰ)若直线的斜率为1,求直线的斜率;

(Ⅱ)是否存在直线,使得成立?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某公园有三条观光大道围成直角三角形,其中直角边,斜边.现有甲、乙、丙三位小朋友分别在大道上嬉戏,所在位置分别记为点

(1)若甲乙都以每分钟的速度从点出发在各自的大道上奔走,到大道的另一端

时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;

(2)设,乙丙之间的距离是甲乙之间距离的2倍,且,请将甲

乙之间的距离表示为θ的函数,并求甲乙之间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax+1|+|2x﹣1|(a∈R).

(1)当a=1时,求不等式f(x)≥2的解集;

(2)若f(x)≤2xx[,1]时恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,甲船以每小时 海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距 海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 且cos( )= ,sin 求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 恒过定点,圆经过点和点,且圆心在直线上.

(1)求定点的坐标;

(2)求圆的方程;

(3)已知点为圆直径的一个端点,若另一个端点为点,问:在轴上是否存在一点,使得为直角三角形,若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案