精英家教网 > 高中数学 > 题目详情
8.已知函数y=4x-2x+1+2,x∈[-1,2].
(1)设t=2x,求t的取值范围;
(2)求函数的最值,并求出取得最值时对应的x的值.

分析 (1)利用换元法,结合指数函数的性质即可求出t的范围.
(2)结合一元二次函数的性质进行求解.

解答 解:(1)y=4x-2x+1+2=(2x2-2•2x+2=(2x-1)2+1,
设t=2x
∵-1≤x≤2,∴$\frac{1}{2}$≤2x≤4,即$\frac{1}{2}$≤t≤4.
(2)函数等价为y=f(t)=(t-1)2+1,
∴当t=4时,函数取得最大值f(4)=32+1=9+1=10,
当t=1时,函数取得最小值f(1)=1.

点评 本题主要考查函数的最值,利用换元法结合一元二次函数的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.计算下列各式的值:
(1)($\frac{1}{16}$)${\;}^{-\frac{3}{4}}$-4•(-2)-3+($\frac{1}{4}$)0-9${\;}^{\frac{1}{2}}$;
(2)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{x+1}&{x≤0}\\{lo{g}_{2}x}&{x>0}\end{array}\right.$,则函数y=f[f(x)]-1的图象与x轴有2个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知奇函数f(x)在(-∞,+∞)上是减函数,且f(a2)+f(a-2)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.判断下列函数的奇偶性.
(1)f(x)=lg$\frac{1-x}{1+x}$;
(2)f(x)=ln($\sqrt{1+{x}^{2}}$-x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:${27}^{\frac{2}{3}}$+($\frac{1}{2}$)-2+${log}_{2}\frac{1}{8}$+1g100+($\sqrt{5}$-1)0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线y=kx+2与圆x2+(y-1)2=4的位置关系是(  )
A.相离B.相切C.相交D.与k的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y=ax2的准线方程为y=-1,则实数a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人.
(Ⅰ)根据以上数据建立2×2列联表;
(Ⅱ)能否在犯错误不超过0.05的前提下认为该药物有效?
参考
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$ (n=a+b+c+d)

查看答案和解析>>

同步练习册答案