精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)当时,函数恒有意义,求实数的取值范围;

(2)是否存在这样的实数,使得函数fx)在区间上为减函数,并且最大值为?如果存在,试求出的值;如果不存在,请说明理由.

【答案】1 2)不存在.

【解析】

1)结合题意得到关于实数的不等式组,求解不等式,即可求解,得到答案;

2)由题意结合对数函数的图象与性质,即可求得是否存在满足题意的实数的值,得到答案.

1)由题意,函数,设

因为当时,函数恒有意义,即对任意时恒成立,

又由,可得函数上为单调递减函数,

则满足,解得

所以实数的取值范围是

2)不存在,理由如下:

假设存在这样的实数,使得函数fx)在区间上为减函数,并且最大值为

可得,即,即,解得,即

又由当时,,此时函数为意义,

所以这样的实数不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足:,且(n=1,2,...).记
集合
(1)(Ⅰ)若,写出集合M的所有元素;
(2)(Ⅱ)若集合M存在一个元素是3的倍数,证明:M的所有元素都是3的倍数;
(3)(Ⅲ)求集合M的元素个数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数发f(x)=(x+1)lnx﹣ax+2.
(1)当a=1时,求在x=1处的切线方程;
(2)若函数f(x)在定义域上具有单调性,求实数a的取值范围;
(3)求证: ,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图茎叶图记录了甲,乙两班各六名同学一周的课外阅读时间(单位:小时),已知甲班数据的平均数为13,乙班数据的中位数为17,那么x的位置应填;y的位置应填

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:mx2+y2=1(m>0).
(Ⅰ)若椭圆E的右焦点坐标为 ,求m的值;
(Ⅱ)由椭圆E上不同三点构成的三角形称为椭圆的内接三角形.若以B(0,1)为直角顶点的椭圆E的内接等腰直角三角形恰有三个,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行所给的程序框图,则输出的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的前n项和为Sn , 若S9=81,a3+a5=14.
(1)求数列{an}的通项公式;
(2)设bn= ,若{bn}的前n项和为Tn , 证明:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)试比较f(﹣1)与f(a)的大小;
(Ⅱ)当a≥﹣1时,若函数f(x)的图象和x轴围成一个三角形,则实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入x1=1,x2=2,d=0.01则输出n的值(
A.6
B.7
C.8
D.9

查看答案和解析>>

同步练习册答案