精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
kx+2,x≤0
lnx,x>0
(k∈R).若函数y=|f(x)|+k有三个零点,则实数k的取值范围是(  )
A、k≤-2
B、-2≤k<-1
C、-1<k<0
D、k≤2
考点:函数零点的判定定理,函数的图象
专题:计算题,函数的性质及应用
分析:函数y=|f(x)|+k有三个零点可化为方程|f(x)|=-k有三个不同的解,则k<0,此时|lnx|=-k有两个解,则|kx+2|=-k在(-∞,0]只有一个解,从而求出实数k的取值范围.
解答: 解:函数y=|f(x)|+k有三个零点可化为方程|f(x)|=-k有三个不同的解,
若k=0,则x=1,只有一个解,不成立,则k<0;
若|lnx|=-k,则x=ek或x=e-k
则|kx+2|=-k在(-∞,0]只有一个解,
在(-∞,0]上,|kx+2|=kx+2=-k,
则x=
-k-2
k
≤0,则k≤-2,
故选A.
点评:本题考查了函数的零点与方程的根之间的关系,本题将函数的零点化为了方程的根,同时才查了化简的技巧,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某企业近几年的年产值如图,则年增长率最高的是(  )(年增长率=年增长值/年产值)
A、97年B、98年
C、99年D、00年

查看答案和解析>>

科目:高中数学 来源: 题型:

在双曲线C:
x2
a2
-
y2
b2
=1中,过焦点垂直于实轴的弦长为
2
3
3
,焦点到一条渐近线的距离为1,
(1)求该双曲线的方程;
(2)若直线L:y=kx+m(m≠0,k≠0)与双曲线C交于A、B两点(A、B不是左右顶点),且以AB为直径的圆过双曲线C的右顶点.求证:直线L过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,a1=-8,且
S8
8
-
S6
6
=2,则S10=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x+x-a
=x(a∈R)在[-1,1]上有解,则a的取值范围是(  )
A、[1,2]
B、[-
1
2
,1
]
C、[1,3]
D、[-
1
2
,3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2,x≤-1
x2,-1<x<2
2x,x≥2

(1)求f[f(
3
)]的值;
(2)若f(a)=3,求a的值.
(3)画出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C三点不共线,空间内任一点O满足
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),则“x+y+z=1”是“点P在由A,B,C所确定的平面内”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD,底面ABCD是∠A=60°的菱形且PD=AD=2,又PD⊥底面ABCD,点M、N分别是棱AD、PC的中点.
(1)证明:DN∥平面PMB;
(2)证明:平面PMB⊥平面PAD;
(3)求点M到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列五个命题:
①若A∩B=Φ,则A,B之中至少有一个为空集;
②函数y=
x(x-1)
+
x
的定义域为{x|x≥1};
③集合A={x∈R|x2-2x+1=0}有两个元素;
④函数y=2x(x∈Z)的图象是一直线;
⑤不等式(x2-4)(x-6)2≤0的解集是{x|-2≤x≤2或x=6}.
其中错误命题的序号是
 

查看答案和解析>>

同步练习册答案