A. | ±1 | B. | ±$\frac{1}{2}$ | C. | $\sqrt{2}$ | D. | ±$\sqrt{2}$ |
分析 把y=x+m,代入x2+2y2=2,结合题设条件利用椭圆的弦长公式能求出m,即可.
解答 解:椭圆$\frac{x^2}{2}$+y2=1,即:x2+2y2=2,
l:y=x+m,代入x2+2y2=2,
整理得3x2+4mx+2m2-2=0,
设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{4m}{3}$,x1x2=$\frac{2{m}^{2}-2}{3}$,
|AB|=$\sqrt{2}$•|x1-x2|
=$\sqrt{2}$•$\sqrt{{({x}_{1}+{x}_{2})}^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{2}$$•\sqrt{(-\frac{4m}{3})^{2}-\frac{8{m}^{2}-8}{3}}$=$\frac{4\sqrt{2}}{3}$.
可得m2=1,解得m=±1.
故选:A.
点评 本题考查椭圆弦长的求法,解题时要注意弦长公式,考查计算能力以及分析问题解决问题的能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com