精英家教网 > 高中数学 > 题目详情
2.已知α=$\frac{23}{5}$π.
(1)把α写成2kπ+β(k∈Z,β∈[0,2π))的形式;
(2)求θ,使θ与α的终边相同,且θ∈(-4π,-2π).

分析 (1)利用终边相同角的表示方法,写出结果即可.
(2)选择适当的k,求出θ,使θ与α的终边相同.

解答 解:(1)把α写成2kπ+β(k∈Z,β∈[0,2π))的形式;α=$\frac{23}{5}$π=4π+$\frac{3}{5}π$.
(2)与α终边相同的角表示为:2kπ+$\frac{3}{5}π$,k∈Z.
当k=-1时,θ=$-\frac{7π}{5}$.
当k=-2时,θ=$-\frac{17π}{5}$.

点评 本题考查终边相同角的表示,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\frac{x}{x+1}$,则$f(2)+f(3)+…+f(10)+f(\frac{1}{2})+f(\frac{1}{3})+…+f(\frac{1}{10})$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆x2+y2=5与圆x2+y2+2x-3=0的交点坐标是(1,2),(1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.直线l:y=x+m与椭圆$\frac{{x}^{2}}{4}$+y2=1交于A、B两点,弦长AB为$\frac{4\sqrt{6}}{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.计算:
(1)7${\;}^{(1-lo{g}_{7}5)}$;
(2)4${\;}^{\frac{1}{2}}$${\;}^{(lo{g}_{2}}9-lo{g}_{2}5)$;
(3)3${\;}^{1+lo{g}_{3}6}$-2${\;}^{4+lo{g}_{2}3}$+103lg3+($\frac{1}{9}$)${\;}^{lo{g}_{3}4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.己知圆C:(x-2)2+(y-4)2=1.P(x,y)为圆C上一点,则x2+y2的取值范围是[21-4$\sqrt{5}$,21+4$\sqrt{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断下列函数的奇偶性:
(1)f(x)=$\sqrt{2}$sin(2x+$\frac{5}{2}π$);
(2)f(x)=1g(sinx+$\sqrt{1+si{n}^{2}x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若x3+x6的展开式可以写成a0+a1(x+1)+a2(x+1)2+…+a6(x+1)6,则a2=45.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若f(x)=$\frac{1}{2}$x2-ax+alnx在(0,+∞)上单调增,则实数a的取值范围为(  )
A.(0,+∞)B.(-∞,4]C.[0,4]D.(4,+∞)

查看答案和解析>>

同步练习册答案