精英家教网 > 高中数学 > 题目详情
1.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$•$\overrightarrow b$=0,且|$\overrightarrow a$-$\overrightarrow b$|=2|$\overrightarrow a$|,则向量$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$•$\overrightarrow b$=0,且|$\overrightarrow a$-$\overrightarrow b$|=2|$\overrightarrow a$|,两边平方解得$|\overrightarrow{b}|$=$\sqrt{3}|\overrightarrow{a}|$,不妨令$\overrightarrow{a}$=(1,0),则$\overrightarrow{b}$=(0,$\sqrt{3}$).利用向量的数量积运算性质、向量夹角公式即可得出.

解答 解:∵非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$•$\overrightarrow b$=0,且|$\overrightarrow a$-$\overrightarrow b$|=2|$\overrightarrow a$|,
∴${\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}=4|\overrightarrow{a}{|}^{2}$,解得$|\overrightarrow{b}|$=$\sqrt{3}|\overrightarrow{a}|$,
不妨令$\overrightarrow{a}$=(1,0),则$\overrightarrow{b}$=(0,$\sqrt{3}$).
∴$\overrightarrow{a}-\overrightarrow{b}$=(1,-$\sqrt{3}$),
设向量$\overrightarrow a$-$\overrightarrow b$与$\overrightarrow b$的夹角为θ.
∴cosθ=$\frac{(\overrightarrow{a}-\overrightarrow{b})•\overrightarrow{b}}{|\overrightarrow{a}-\overrightarrow{b}||\overrightarrow{b}|}$=$\frac{-3}{2×\sqrt{3}}$=-$\frac{\sqrt{3}}{2}$,
∴$θ=\frac{5π}{6}$.
故选:D.

点评 本题考查了向量的数量积运算性质、向量夹角公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知$({{x^2}+a}){({x-\frac{1}{x}})^6}$(a∈R)的展开式中常数项为5,则该展开式中x2的系数为(  )
A.$-\frac{25}{2}$B.-5C.$\frac{25}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)在实数集R上具有下列性质:
①f(x+2)=-f(x);
②f(x+1)是偶函数;
③当x1≠x2∈[1,3]时,(f(x2)-f(x1))(x2-x1)<0.
则f(2011),f(2012),f(2013)的大小关系为(  )
A.f(2011)>f(2012)>f(2013)B.f(2012)>f(2011)>f(2013)
C.f(2013)>f(2011)>f(2012)D.f(2013)>f(2012)>f(2011)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求适合下列条件的椭圆的标准方程:
(Ⅰ)a=$\sqrt{6}$,b=1,焦点在x轴上;
(Ⅱ)焦点在y轴上,焦距是4,且经过点M(-2$\sqrt{6}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=x2-2ax+1有两个零点,且分别在(0,1)与(1,2)内,则实数a的取值范围是(1,$\frac{5}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=min$\{3-\frac{1}{2}{log_2}x,{log_2}x\}$,其中min(p,q}表示p,q两者中较小的一个,则满足f(x)<1的x的集合为(  )
A.(0,$\sqrt{2}$)B.(0,$\sqrt{2}$)∪(4,+∞)C.(0,2)D.(0,2)∪(16,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=ln x,则f($\frac{1}{3}$)、f(2)、f($\frac{1}{2}$)的大小关系为f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知x=log2aa,y=log3a2a,求证:21-xy=3y-xy

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知{an}是等比数列,如果$\underset{lim}{n→∞}$(a1+a2+…+an)=2,且a3,a5,a6成等差数列,则a1=1+$\sqrt{5}$.

查看答案和解析>>

同步练习册答案