精英家教网 > 高中数学 > 题目详情
集合A是由适合以下性质的函数f(x)构成的:对于任意的,且u、υ∈(-1,1),都有|f(u)-f(υ)|≤3|u-υ|.
(1)判断函数f1(x)=
1+x2
是否在集合A中?并说明理由;
(2)设函数f(x)=ax2+bx,且f(x)∈A,试求2a+b的取值范围;
(3)在(2)的条件下,若f(2)=6,且对于满足(2)的每个实数a,存在最小的实数m,使得当x∈[m,2]时,|f(x)|≤6恒成立,试求用a表示m的表达式.
分析:(1)先取u、υ∈(-1,1)时,检验|f1(u)-f1(υ)|≤3|u-υ|是否成立,根据已知给出判断即可
(2)由f(x)∈A可得,|u-υ|≥|f(u)-f(υ)|=|(u-υ)(au+aυ+b)|,即|au+aυ+b|≤3 成立,设t=u+υ,结合u,υ∈(-1,1)可得t的范围,可求
(3)由f(2)=6可得,2a+b=3由(2)中2a+b的范围,可求a的范围,而当x∈[m,2]时,结合二次函数的性质可求x∈R时f(x)min,通过与函数的最小值与端点6,与-6的大小可的m与方程的根的关系,从而可求a与m之间的关系
解答:解:(1)f1(x)∈A,任取u、υ∈(-1,1),且u≠υ,
|f1(u)-f1(υ)|=|
1+u2
-
1+υ2
|=
|u2-υ2|
|
1+u2
+
1+υ2
|
=
|u+υ|×|u-υ|
|
1+u2
+
1+υ2
|

因为|u|<
1+u2
,|υ|<
1+υ2
,且|u+υ|≤|u|+|υ|
所以
|u+υ|
|
1+u2
+
1+υ2
|
<1
所以|f1(u)-f1(υ)|<|u-υ|<3|u-υ|,亦即f1(x)∈A
(2)因为f(x)=ax2+bx属于集合A,所以,任取u、υ∈(-1,1)且u≠υ,
则3|u-υ|≥|f(u)-f(υ)|=|(u-υ)(au+aυ+b)|,
也即|au+aυ+b|≤3  ①
设t=u+υ,则上式化为|at+b|≤3②
因为u,υ∈(-1,1),所以-2<t<2
①式对任意的u,υ∈(-1,1)恒成立,即②式对t∈(-2,2)恒成立可以证明|2a|+|b|≤3,所以|2a+b|≤3,
即2a+b∈[-3,3]
(3)由f(2)=6可知2a+b=3
又由(2)可知-3≤2a+b≤3,所以0≤a≤
3
2

当a=0时,b=3,f(x)=3x在[m,2]上为单调递增函数,f(m)=3m,f(2)=4
令3m=-6,可得m=-2
当a>0时,f(x)=ax2+(3-2a)x=a(x+
3-2a
2a
)2-
(3-2a)2
4a

此时,-
3-2a
2a
=1-
3
2a
≤0
,且当x∈R时f(x)的最小值为f(-
3-2a
2a
)=-
(3-2a)2
4a

-
(3-2a)2
4a
≥-6
,即
9-6
2
2
≤a≤
3
2
时,m为方程f(x)=6的较小根,所以m=-
3
a

-
(3-2a)2
4a
<-6,即0<a<
9-6
2
2
时,由于f(x)在[-
3-2a
2a
,+∞)
上单调递增,
所以m为方程f(x)=-6的较大根,所以m=
2a-3+
4a2-36a+9
2a

综上可知,m=
-2(a=0)
2a-3+
4a2-36a+9
2a
(0<a<
9-6
2
2
)
-
3
a
(
9-6
2
2
≤a≤
3
2
点评:本题以集合的关系为载体主要考查了函数的单调性于函数的值域的求解,而函数的恒成立的问题的解决常转化为求解函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

集合A是由适合以下性质的函数f(x)构成的,对于任意的x>0  y>0且x≠y都有f(x)+2f(y)>3f(
x+2y
3
)

(1)试判断f1(x)=log2x及f2(x)=(x+1)2是否在集合A中?并说明理由
(2)设f(x)∈A,且定义域是(0,+∞),值域是(1,2),f(1)>
3
2
,写出一个满足上述条件的解析式;并证明此函数f(x)∈A.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A是由适合以下性质的函数f(x)组成的,对于任意的x≥0,f(x)∈[-2,4)且f(x)在(0,+∞)上是增函数.
(1)试判断f1(x)=
x
-2
及f2(x)=4-6?(
1
2
x(x≥0)是否在集合A中,若不在集合A中,试说明理由;
(2)对于(1)中你认为是集合A中的函数f(x),不等式f(x)+f(x+2)<2f(x+1)是否对于任意x≥0总成立?试证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A是由适合以下性质的函数f(x)构成的:对于定义域内任意两个不相等的实数x1,x2,都有
1
2
[f(x1)+f(x2)]>f(
x1+x2
2
)

(1)试判断f(x)=x2及g(x)=log2x是否在集合A中,并说明理由;
(2)设f(x)∈A且定义域为(0,+∞),值域为(0,1),f(1)>
1
2
,试求出一个满足以上条件的函数f (x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A是由适合以下性质的函数组成:对于任意x≥0,f(x)∈[-2,4],且f(x)在(0,+∞) 上是增函数.
(1)试判断f1(x)=
x
-2
f2(x)=4-6•(
1
2
)x
是否在集合A中,并说明理由;
(2)若定义:对定义域中的任意一个x都有不等式f(x)+f(x+2)<2f(x+1)恒成立,则称这个函数为凸函数.对于(1)中你认为在集合A中的函数f(x)是凸函数吗?试证明你的结论.

查看答案和解析>>

同步练习册答案