精英家教网 > 高中数学 > 题目详情

【题目】已知,圆上的动点T满足:线段TQ的垂直平分线与线段TP相交于点K

求点K的轨迹C的方程;

经过点的斜率之积为的两条直线,分别与曲线C相交于MN两点,试判断直线MN是否经过定点若是,则求出定点坐标;若否,则说明理由.

【答案】(Ⅰ)() 经过定点.

【解析】

利用椭圆的定义即可得出k的轨迹方程;设直线AM的方程为,代入椭圆方程消元,得出MN坐标的关系,求出MN的方程,即可求出点的坐标.

K的轨迹是以PQ为焦点,长轴长为4,焦距为的椭圆,

K的轨迹方程为:

设直线AM的斜率为k,则直线AM的方程为

联立可得,整理,可得

,则,代入,可得

同理可得

MN的横坐标不相等时,直线MN的斜率

故直线MN的方程为

,可得

此时直线MN经过点

MN的横坐标相等时,有,解得

此时点MN的横坐标为

此时直线MN经过点

综上所述直线MN经过点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某建筑公司打算在一处工地修建一座简易储物间.该储物间室内地面呈矩形形状,面积为,并且一面紧靠工地现有围墙,另三面用高度一定的矩形彩钢板围成,顶部用防雨布遮盖,其平面图如图所示.已知该型号彩钢板价格为100/米,整理地面及防雨布总费用为500元,不受地形限制,不考虑彩钢板的厚度,记与墙面平行的彩钢板的长度为.

1)用表示修建储物间的总造价(单位:元);

2)如何设计该储物间,可使总造价最低?最低总造价为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与圆C相交,截得的弦长为.

1)求圆C的方程;

2)过原点O作圆C的两条切线,与函数的图象相交于MN两点(异于原点),证明:直线与圆C相切;

3)若函数图象上任意三个不同的点PQR,且满足直线都与圆C相切,判断线与圆C的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线为

)若直线的斜率为,求函数的单调区间.

)若函数是区间上的单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C,过点的直线l与抛物线C交于不同的两点MN,设,且时,则直线MN斜率的取值范围是  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推.例如8455用算筹表示就是,则以下用算筹表示的四位数正确的为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.

非一线城市

一线城市

总计

愿生

45

20

65

不愿生

13

22

35

总计

58

42

100

附表:

算得,

参照附表,得到的正确结论是

A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”

B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”

C. 有99%以上的把握认为“生育意愿与城市级别有关”

D. 有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形.

(1)求出并猜测的表达式;

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数,试研究函数的极值情况;

(2)记函数在区间内的零点为,记,若在区间内有两个不等实根,证明:.

查看答案和解析>>

同步练习册答案