精英家教网 > 高中数学 > 题目详情
如图,表示以AB=4 cm,BC=3 cm的长方形ABCD为底面的长方体被平面斜着截断的几何体,EFGH是它的截面.当AE=5 cm,BF=8 cm,CG=12 cm时,试回答下列问题:

(1)求DH的长;

(2)求这个几何体的体积;

(3)截面四边形EFGH是什么图形?并证明你的结论.

解:(1)过E作EB1⊥BF,则BB1=AE=5,所以B1F=8-5=3.

根据面面平行的定理,因为平面ABFE∥平面DCGH,EF和HG是它们分别与截面的交线,所以EF∥HG.

过H作HC1⊥CG,垂足为C1.则

GC1=FB1=3 cm,DH=12-3=9(cm).

(2)用一个与该几何体完全相同的几何体,倒置其上,使它们拼接组合成一个以ABCD为底,高为17 cm的长方体.设原几何体的体积为V.所以

2V=3×4×17=204(cm3),

即V=102 cm3.

(3)已知EF∥HG,同理,EH∥FG.

于是EFGH是平行四边形.

因为EF==5,过E作ED1⊥DH,则

DD1=AE=5,ED1=AD=3,HD1=9-5=4,

所以EH==5.

所以EF=EH.故EFGH是菱形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、如图是表示以AB=4,BC=3的矩形ABCD为底面的长方体被一平面斜截所得的几何体,其中四边形EFGH为截面.已知AE=5,BF=8,CG=12.
(1)作出截面EFGH与底面ABCD的交线l;
(2)截面四边形EFGH是否为菱形?并证明你的结论;
(3)求DH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)不等式|
x+1
x-1
|≥1
的解集是
(-∞,0]
(-∞,0]

B.(几何证明选做题) 如图,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF=
2
2

C.(坐标系与参数方程选做题) 在极坐标中,已知点P为方程ρ(cosθ+sinθ)=1所表示的曲线上一动点,Q(2,
π
3
),则|PQ|的最小值为
6
2
6
2

查看答案和解析>>

科目:高中数学 来源:2011年陕西省西安市西工大附中高考数学一模试卷(文科)(解析版) 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)不等式的解集是   
B.(几何证明选做题) 如图,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF=   
C.(坐标系与参数方程选做题) 在极坐标中,已知点P为方程ρ(cosθ+sinθ)=1所表示的曲线上一动点,Q(2,),则|PQ|的最小值为   

查看答案和解析>>

科目:高中数学 来源:2011年陕西省西安市西工大附中高考数学一模试卷(理科)(解析版) 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题)不等式的解集是   
B.(几何证明选做题) 如图,以AB=4为直径的圆与△ABC的两边分别交于E,F两点,∠ACB=60°,则EF=   
C.(坐标系与参数方程选做题) 在极坐标中,已知点P为方程ρ(cosθ+sinθ)=1所表示的曲线上一动点,Q(2,),则|PQ|的最小值为   

查看答案和解析>>

同步练习册答案