精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$满足对任意的x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则a的取值范围是(0,$\frac{1}{3}$].

分析 由已知可得:函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$在R上为减函数,进而$\left\{\begin{array}{l}0<a<1\\ a-2<0\\ 1≥3a\end{array}\right.$,解得a的取值范围.

解答 解:对任意的x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
则函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x<0}\\{(a-2)x+3a,x≥0}\end{array}\right.$在R上为减函数,
∴$\left\{\begin{array}{l}0<a<1\\ a-2<0\\ 1≥3a\end{array}\right.$,
解得a∈(0,$\frac{1}{3}$],
故答案为:(0,$\frac{1}{3}$]

点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=ax3+bx+$\frac{c}{x}$+2,满足f(-3)=-2015,则f(3)的值为2019.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中,值域为(0,+∞)的是(  )
A.$y=\sqrt{x}$B.y=2|x|C.y=x2+x+1D.y=2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.p:实数a使得x2-ax+1<0有解,q:实数a满足函数y=ax在定义域内递增.
(1)p为真时,a的取值范围.
(2)p∧q为假,且p∨q为真时,a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2sin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)有两个相邻的零点:-$\frac{π}{6}$,$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)若f(α)=$\frac{2\sqrt{2}}{3}$,求cos6α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$tan({α-\frac{π}{4}})=3$,则$\frac{1}{sinαcosα}$的值为-$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.不用计算器求下列各式的值
(1)${log_3}\frac{{\root{4}{27}}}{3}+lg25+lg4+{7^{{{log}_7}2}}$
(2)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-9.6})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.A={x||x|<1},B={x|x>a},且A∩B=∅,则a的取值范围a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设z=2x+y,其中变量x和y满足条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

同步练习册答案