精英家教网 > 高中数学 > 题目详情
如图,在三棱锥S-ABC中,SC⊥平面ABC,点P、M分别是SC和SB的中点,设PM=AC=1,∠ACB=90°,直线AM与直线SC所成的角为60°.
(1)求证:BC∥面AMP;
(2)求证:平面MAP⊥平面SAC;
(3)求锐二面角M-AB-C的大小的余弦值.

【答案】分析:(1)利用三角形中位线的性质,可得线线平行,从而可得线面平行;
(2)欲证面MAP⊥面SAC,根据面面垂直的判定定理可知在平面MAP内一直线与平面SAC垂直,根据线面垂直的判定定理可知BC⊥平面SAC,而PM∥BC,从而PM⊥面SAC,满足定理所需条件;
(3)建立空间直角坐标系,利用向量的夹角公式,即可求锐二面角M-AB-C的大小的余弦值.
解答:(1)证明:∵P,M是SC、SB的中点
∴PM∥BC,
∵BC?面AMP,PM?面AMP
∴BC∥面AMP;
(2)证明:∵SC⊥平面ABC,SC⊥BC,
又∵∠ACB=90°∴AC⊥BC,
∵AC∩SC=C,∴BC⊥平面SAC,
∵PM∥BC,
∴PM⊥面SAC,
∵PM?面MAP,∴面MAP⊥面SAC;
(3)解:以C为原点,建立空间直角坐标系,
则P(0,0,),B(0,2,0),A(1,0,0),M(0,1,),S(0,0,
=(-1,1,),=(-1,2,0)
设平面MAN的一个法向量为=(x,y,z),则
,可得
∴可取=(4,2,
取平面ABC的一个法向量为=(0,0,1)
∴cos<>===
∴锐二面角M-AB-C的大小的余弦值为
点评:本题考查线面平行,考查平面与平面垂直的判定,二面角及其度量,考查空间想象能力,逻辑思维能力,计算能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥S-ABC中,SA⊥平面ABC,平面SAB⊥平面SBC.
(1)求证:AB⊥BC;
(2)若设二面角S-BC-A为45°,SA=BC,求二面角A-SC-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥S-ABC中,平面SBC⊥平面ABC,SB=SC=AB=2,BC=2
2
,∠BAC=90°,O为BC中点.
(Ⅰ)求点B到平面SAC的距离;
(Ⅱ)求二面角A-SC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•杭州模拟)如图,在三棱锥S-ABC中,SA=SC=AB=BC,则直线SB与AC所成角的大小是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•成都一模)如图,在三棱锥S-ABC中,SA丄平面ABC,SA=3,AC=2,AB丄BC,点P是SC的中点,则异面直线SA与PB所成角的正弦值为(  )

查看答案和解析>>

同步练习册答案