精英家教网 > 高中数学 > 题目详情

已知{an}是递增数列,且对任意n∈N*都有an=n2+λn恒成立,则实数λ的取值范围是


  1. A.
    (-数学公式,+∞)
  2. B.
    (0,+∞)
  3. C.
    [-2,+∞)
  4. D.
    (-3,+∞)
D
分析:由{an}是递增数列,得到an+1>an,再由“an=n2+λn恒成立”转化为“λ>-2n-1对于n∈N*恒成立”求解.
解答:∵{an}是递增数列,
∴an+1>an
∵an=n2+λn恒成立
即(n+1)2+λ(n+1)>n2+λn,
∴λ>-2n-1对于n∈N*恒成立.
而-2n-1在n=1时取得最大值-3,
∴λ>-3,
故选D.
点评:本题主要考查由数列的单调性来构造不等式,解决恒成立问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)若有穷递增数列{bn}是“兑换系数”为a的“兑换数列”,求证:数列{bn}的前n项和Sn=
n2
•a

(3)已知有穷等差数列{cn}的项数是n0(n0≥3),所有项之和是B,试判断数列{cn}是否是“兑换数列”?如果是的,给予证明,并用n0和B表示它的“兑换系数”;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)已知有穷等差数列bn的项数是n0(n0≥3),所有项之和是B,求证:数列bn是“兑换数列”,并用n0和B表示它的“兑换系数”;
(3)对于一个不少于3项,且各项皆为正整数的递增数列{cn},是否有可能它既是等比数列,又是“兑换数列”?给出你的结论并说明理由.

查看答案和解析>>

科目:高中数学 来源:四川省成都市龙泉中学2010届高三第五次调研考试数学文科试题 题型:022

有以下几个命题

①一个容量为n的样本,分成若干组,已知某组的频数和频率分别为40和0.125,则n的值为320;

②设A、B为两个定点,m(m>0)为常数,,则动点P的轨迹为椭圆;

③若数列{an}是递增数列,且an=n2+λn+1(n≥2,n∈N*),则实数λ的取值范围是(-5,+∞);

④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线对称的点M的轨迹是圆.

其中真命题的序号为________;(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省厦门市思明区科技中学高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)若有穷递增数列{bn}是“兑换系数”为a的“兑换数列”,求证:数列{bn}的前n项和
(3)已知有穷等差数列{cn}的项数是n(n≥3),所有项之和是B,试判断数列{cn}是否是“兑换数列”?如果是的,给予证明,并用n和B表示它的“兑换系数”;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省厦门市思明区科技中学高二(上)期中数学试卷(理科)(解析版) 题型:解答题

如果存在常数a使得数列{an}满足:若x是数列{an}中的一项,则a-x也是数列{an}中的一项,称数列{an}为“兑换数列”,常数a是它的“兑换系数”.
(1)若数列:1,2,4,m(m>4)是“兑换系数”为a的“兑换数列”,求m和a的值;
(2)若有穷递增数列{bn}是“兑换系数”为a的“兑换数列”,求证:数列{bn}的前n项和
(3)已知有穷等差数列{cn}的项数是n(n≥3),所有项之和是B,试判断数列{cn}是否是“兑换数列”?如果是的,给予证明,并用n和B表示它的“兑换系数”;如果不是,说明理由.

查看答案和解析>>

同步练习册答案