精英家教网 > 高中数学 > 题目详情

【题目】某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是

A. 得分在之间的共有40

B. 从这100名参赛者中随机选取1人,其得分在的概率为

C. 100名参赛者得分的中位数为65

D. 估计得分的众数为55

【答案】C

【解析】

根据频率分布直方图,利用最高的小矩形对应的底边中点估计众数;根据频率和为1,计算a的值;计算得分在[60,80)内的频率,用频率估计概率即可.

根据频率和为1,计算(a+0.035+0.030+0.020+0.010)×10=1,解得a=0.005,

得分在的频率是0.40,估计得分在的有100×0.40=40人,A正确

得分在的频率为0.5,用频率估计概率,
知这100名男生中随机抽取一人,得分在的概率为,B正确.

根据频率分布直方图知,最高的小矩形对应的底边中点为 ,∴估计众数为55,D正确;

故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的单调区间;

(2)求的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以坐标原点为圆心的圆与抛物线相交于不同的两点 ,与抛物线的准线相交于不同的两点 ,且.

(1)求抛物线的方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足.证明直线过定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是函数的图象的一个对称中心,且点到该图象的对称轴的距离的最小值为.

的最小正周期是

的值域为

的初相

上单调递增.

以上说法正确的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OA,OB是两条互相垂直的笔直公路,半径OA=2km的扇形AOB是某地的一名胜古迹区域.当地政府为了缓解该古迹周围的交通压力,欲在圆弧AB上新增一个入口P(点P不与A,B重合),并新建两条都与圆弧AB相切的笔直公路MB,MN,切点分别是B,P.当新建的两条公路总长最小时,投资费用最低.设∠POA=,公路MB,MN的总长为

(1)求关于的函数关系式并写出函数的定义域

(2)当为何值时投资费用最低并求出的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列四个命题:

(1)“若,则互为倒数”的逆命题;

(2)“面积相等的三角形全等”的否命题;

(3)“若,则有实数解”的逆否命题;

(4)“若,则”的逆否命题.

其中真命题为( )

A. (1)(2) B. (2)(3) C. (4) D. (1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是(  )

A. 50 mB. 100 m

C. 120 mD. 150 m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中是假命题的是( )

A. ,函数都不是偶函数

B.

C. ,使

D. 若向量,则方向上的投影为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.

1)选5人排成一排;

2)排成前后两排,前排4人,后排3人;

3)全体排成一排,甲不站排头也不站排尾;

4)全体排成一排,女生必须站在一起;

5)全体排成一排,男生互不相邻.

查看答案和解析>>

同步练习册答案